IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v93y2008i3p476-481.html
   My bibliography  Save this article

Probabilistic procedure for design of untreated timber poles in-ground under attack of decay fungi

Author

Listed:
  • Wang, Chi-hsiang
  • Leicester, Robert H.
  • Nguyen, Minh

Abstract

Based on first-order probability theory, this paper presents a probabilistic procedure for design of timber poles in ground contact under attack of decay fungi. Fungal attack prediction model developed in a multi-disciplinary national project in Australia, sponsored by the Forestry and Wood Products Research and Development Corporation, is used in this study for decay progress modelling. A durability design factor, kD, is derived and proposed for consideration in practical design of timber construction. Examples for computation of kD for untreated timber poles installed at two sites in Australia are given.

Suggested Citation

  • Wang, Chi-hsiang & Leicester, Robert H. & Nguyen, Minh, 2008. "Probabilistic procedure for design of untreated timber poles in-ground under attack of decay fungi," Reliability Engineering and System Safety, Elsevier, vol. 93(3), pages 476-481.
  • Handle: RePEc:eee:reensy:v:93:y:2008:i:3:p:476-481
    DOI: 10.1016/j.ress.2006.12.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832007000154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2006.12.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salman, Abdullahi M. & Li, Yue & Stewart, Mark G., 2015. "Evaluating system reliability and targeted hardening strategies of power distribution systems subjected to hurricanes," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 319-333.
    2. Nathan S. Debortoli & Tristan D. Pearce & James D. Ford, 2023. "Estimating Future Costs for Infrastructure in the Proposed Canadian Northern Corridor at Risk From Climate Change," SPP Research Papers, The School of Public Policy, University of Calgary, vol. 16(6), March.
    3. Salman, Abdullahi M. & Li, Yue & Bastidas-Arteaga, Emilio, 2017. "Maintenance optimization for power distribution systems subjected to hurricane hazard, timber decay and climate change," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 136-149.
    4. Fant, Charles & Boehlert, Brent & Strzepek, Kenneth & Larsen, Peter & White, Alisa & Gulati, Sahil & Li, Yue & Martinich, Jeremy, 2020. "Climate change impacts and costs to U.S. electricity transmission and distribution infrastructure," Energy, Elsevier, vol. 195(C).
    5. Chi-hsiang Wang & Xiaoming Wang, 2012. "Vulnerability of timber in ground contact to fungal decay under climate change," Climatic Change, Springer, vol. 115(3), pages 777-794, December.
    6. Jin Tian & Yue Li, 2014. "System dynamics assessment of mitigation strategies for power distribution poles subjected to hurricanes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1263-1285, January.
    7. Hughes, William & Zhang, Wei & Bagtzoglou, Amvrossios C. & Wanik, David & Pensado, Osvaldo & Yuan, Hao & Zhang, Jintao, 2021. "Damage modeling framework for resilience hardening strategy for overhead power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    8. Lu, Qin & Zhang, Wei, 2022. "Integrating dynamic Bayesian network and physics-based modeling for risk analysis of a time-dependent power distribution system during hurricanes," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    9. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    10. Ryan, Paraic C. & Stewart, Mark G. & Spencer, Nathan & Li, Yue, 2014. "Reliability assessment of power pole infrastructure incorporating deterioration and network maintenance," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 261-273.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:93:y:2008:i:3:p:476-481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.