IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v91y2006i10p1241-1251.html
   My bibliography  Save this article

Response surfaces and sensitivity analyses for an environmental model of dose calculations

Author

Listed:
  • Iooss, Bertrand
  • Van Dorpe, François
  • Devictor, Nicolas

Abstract

A parametric sensitivity analysis is carried out on GASCON, a radiological impact software describing the radionuclides transfer to the man following a chronic gas release of a nuclear facility. An effective dose received by age group can thus be calculated according to a specific radionuclide and to the duration of the release. In this study, we are concerned by 18 output variables, each depending of approximately 50 uncertain input parameters. First, the generation of 1000 Monte-Carlo simulations allows us to calculate correlation coefficients between input parameters and output variables, which give a first overview of important factors. Response surfaces are then constructed in polynomial form, and used to predict system responses at reduced computation time cost; this response surface will be very useful for global sensitivity analysis where thousands of runs are required. Using the response surfaces, we calculate the total sensitivity indices of Sobol by the Monte-Carlo method. We demonstrate the application of this method to one site of study and to one reference group near the nuclear research Center of Cadarache (France), for two radionuclides: iodine 129 and uranium 238. It is thus shown that the most influential parameters are all related to the food chain of the goat's milk, in decreasing order of importance: dose coefficient “effective ingestion†, goat's milk ration of the individuals of the reference group, grass ration of the goat, dry deposition velocity and transfer factor to the goat's milk.

Suggested Citation

  • Iooss, Bertrand & Van Dorpe, François & Devictor, Nicolas, 2006. "Response surfaces and sensitivity analyses for an environmental model of dose calculations," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1241-1251.
  • Handle: RePEc:eee:reensy:v:91:y:2006:i:10:p:1241-1251
    DOI: 10.1016/j.ress.2005.11.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832005002334
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2005.11.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kleijnen, Jack P. C., 2005. "An overview of the design and analysis of simulation experiments for sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 164(2), pages 287-300, July.
    2. Kleijnen, Jack P. C. & Sargent, Robert G., 2000. "A methodology for fitting and validating metamodels in simulation," European Journal of Operational Research, Elsevier, vol. 120(1), pages 14-29, January.
    3. Kleijnen, J.P.C., 1997. "Sensitivity analysis and related analyses : A review of some statistical techniques," Other publications TiSEM 7969b135-47c5-4d76-9241-c, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Venelin Todorov & Slavi Georgiev & Ivan Georgiev & Snezhinka Zaharieva & Ivan Dimov, 2023. "Optimizing Air Pollution Modeling with a Highly-Convergent Quasi-Monte Carlo Method: A Case Study on the UNI-DEM Framework," Mathematics, MDPI, vol. 11(13), pages 1-14, June.
    2. Venelin Todorov & Ivan Dimov, 2022. "Innovative Digital Stochastic Methods for Multidimensional Sensitivity Analysis in Air Pollution Modelling," Mathematics, MDPI, vol. 10(12), pages 1-14, June.
    3. Iooss, Bertrand & Ribatet, Mathieu, 2009. "Global sensitivity analysis of computer models with functional inputs," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1194-1204.
    4. Auder, Benjamin & De Crecy, Agnès & Iooss, Bertrand & Marquès, Michel, 2012. "Screening and metamodeling of computer experiments with functional outputs. Application to thermal–hydraulic computations," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 122-131.
    5. Deman, G. & Kerrou, J. & Benabderrahmane, H. & Perrochet, P., 2015. "Sensitivity analysis of groundwater lifetime expectancy to hydro-dispersive parameters: The case of ANDRA Meuse/Haute-Marne site," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 276-286.
    6. Zio, E. & Pedroni, N., 2009. "Functional failure analysis of a thermal–hydraulic passive system by means of Line Sampling," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1764-1781.
    7. Marrel, Amandine & Iooss, Bertrand & Laurent, Béatrice & Roustant, Olivier, 2009. "Calculations of Sobol indices for the Gaussian process metamodel," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 742-751.
    8. Labopin-Richard T. & Gamboa F. & Garivier A. & Iooss B., 2016. "Bregman superquantiles. Estimation methods and applications," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-33, March.
    9. Hübler, Clemens, 2020. "Global sensitivity analysis for medium-dimensional structural engineering problems using stochastic collocation," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    10. Marrel, Amandine & Iooss, Bertrand & Van Dorpe, François & Volkova, Elena, 2008. "An efficient methodology for modeling complex computer codes with Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4731-4744, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marrel, Amandine & Iooss, Bertrand & Van Dorpe, François & Volkova, Elena, 2008. "An efficient methodology for modeling complex computer codes with Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4731-4744, June.
    2. Jack P. C. Kleijnen & Susan M. Sanchez & Thomas W. Lucas & Thomas M. Cioppa, 2005. "State-of-the-Art Review: A User’s Guide to the Brave New World of Designing Simulation Experiments," INFORMS Journal on Computing, INFORMS, vol. 17(3), pages 263-289, August.
    3. Strang, Kenneth David, 2012. "Importance of verifying queue model assumptions before planning with simulation software," European Journal of Operational Research, Elsevier, vol. 218(2), pages 493-504.
    4. Scott L. Rosen & Christopher P. Saunders & Samar K Guharay, 2015. "A Structured Approach for Rapidly Mapping Multilevel System Measures via Simulation Metamodeling," Systems Engineering, John Wiley & Sons, vol. 18(1), pages 87-101, January.
    5. Happe, Kathrin & Kellermann, Konrad & Balmann, Alfons, 2006. "Agent-based analysis of agricultural policies: An illustration of the agricultural policy simulator AgriPoliS, its adaptation and behavior," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(1).
    6. Marrel, Amandine & Iooss, Bertrand & Laurent, Béatrice & Roustant, Olivier, 2009. "Calculations of Sobol indices for the Gaussian process metamodel," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 742-751.
    7. Hawre Jalal & Bryan Dowd & François Sainfort & Karen M. Kuntz, 2013. "Linear Regression Metamodeling as a Tool to Summarize and Present Simulation Model Results," Medical Decision Making, , vol. 33(7), pages 880-890, October.
    8. Katarzyna Growiec & Jakub Growiec & Bogumil Kaminski, 2017. "Social Network Structure and The Trade-Off Between Social Utility and Economic Performance," KAE Working Papers 2017-026, Warsaw School of Economics, Collegium of Economic Analysis.
    9. Kleijnen, Jack P. C., 2005. "An overview of the design and analysis of simulation experiments for sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 164(2), pages 287-300, July.
    10. Wen-Shiung Lee, 2013. "Merger and acquisition evaluation and decision making model," The Service Industries Journal, Taylor & Francis Journals, vol. 33(15-16), pages 1473-1494, December.
    11. Acharki, Naoufal & Bertoncello, Antoine & Garnier, Josselin, 2023. "Robust prediction interval estimation for Gaussian processes by cross-validation method," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    12. Garavaglia Christian & Malerba Franco & Orsenigo Luigi & Pezzoni Michele, 2014. "Innovation and Market Structure in Pharmaceuticals: An Econometric Analysis on Simulated Data," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 234(2-3), pages 274-298, April.
    13. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    14. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    15. Shi, Wen & Liu, Zhixue & Shang, Jennifer & Cui, Yujia, 2013. "Multi-criteria robust design of a JIT-based cross-docking distribution center for an auto parts supply chain," European Journal of Operational Research, Elsevier, vol. 229(3), pages 695-706.
    16. H. Christopher Frey & Sumeet R. Patil, 2002. "Identification and Review of Sensitivity Analysis Methods," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 553-578, June.
    17. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    18. Yuan, Jun & Nian, Victor & Su, Bin & Meng, Qun, 2017. "A simultaneous calibration and parameter ranking method for building energy models," Applied Energy, Elsevier, vol. 206(C), pages 657-666.
    19. Tunali, S. & Batmaz, I., 2003. "A metamodeling methodology involving both qualitative and quantitative input factors," European Journal of Operational Research, Elsevier, vol. 150(2), pages 437-450, October.
    20. Y. Yang & L. Wang, 2010. "A Review of Modelling Tools for Implementation of the EU Water Framework Directive in Handling Diffuse Water Pollution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1819-1843, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:91:y:2006:i:10:p:1241-1251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.