IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v242y2024ics0951832023005185.html
   My bibliography  Save this article

A DNN-based reliability evaluation method for multi-state series-parallel systems considering semi-Markov process

Author

Listed:
  • Bo, Yimin
  • Bao, Minglei
  • Ding, Yi
  • Hu, Yishuang

Abstract

In order to evaluate the reliability of the multi-state series-parallel system considering semi-Markov process (MSSPS-SMP), the integral equations have been utilized to calculate the state probability distributions. Nevertheless, to solve the formulated integral equations, it is impossible to avoid time-consuming convolution operations for any numerical method, which can result in significant reliability evaluation complexity. To address the above problems, a deep neural network (DNN)-based method is proposed for the reliability evaluation of the MSSPS-SMP. For a multi-state component, the reliability parameters representing the arbitrary distributions of the SMP are firstly extracted as the input feature to DNN, while the corresponding state probability distributions serve as the output of DNN naturally. On this basis, the DNN is deployed to establish a direct mapping relationship between the reliability parameters and state probability distributions. Instead of repeating complicated calculations of SMP-related convolution operation, the well-trained DNN model can effectively determine the performance distributions of multi-state components given the varying reliability parameters. On this basis, the Lz-transform technique is utilized to develop the unified representations of dynamic reliability models of various multi-state components considering SMP. Combined with the Lz-transform, the time-varying performance distribution of the MSSPS-SMP with complicated structures of several components can be determined.

Suggested Citation

  • Bo, Yimin & Bao, Minglei & Ding, Yi & Hu, Yishuang, 2024. "A DNN-based reliability evaluation method for multi-state series-parallel systems considering semi-Markov process," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023005185
    DOI: 10.1016/j.ress.2023.109604
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023005185
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109604?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Xiaoyue & Hillston, Jane, 2015. "Mission reliability of semi-Markov systems under generalized operational time requirements," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 122-129.
    2. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal loading of repairable system with perfect product storage," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    3. D’Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2015. "Economic performance indicators of wind energy based on wind speed stochastic modeling," Applied Energy, Elsevier, vol. 154(C), pages 290-297.
    4. Su, Yue & Li, Jingfa & Yu, Bo & Zhao, Yanlin & Yao, Jun, 2021. "Fast and accurate prediction of failure pressure of oil and gas defective pipelines using the deep learning model," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Yi, He & Cui, Lirong & Shen, Jingyuan & Li, Yan, 2018. "Stochastic properties and reliability measures of discrete-time semi-Markovian systems," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 162-173.
    6. Márcio das Chagas Moura & Enrique López Droguett, 2010. "Numerical Approach for Assessing System Dynamic Availability Via Continuous Time Homogeneous Semi-Markov Processes," Methodology and Computing in Applied Probability, Springer, vol. 12(3), pages 431-449, September.
    7. Gianfranco Corradi & Jacques Janssen & Raimondo Manca, 2004. "Numerical Treatment of Homogeneous Semi-Markov Processes in Transient Case–a Straightforward Approach," Methodology and Computing in Applied Probability, Springer, vol. 6(2), pages 233-246, June.
    8. Li, Xiang-Yu & Huang, Hong-Zhong & Li, Yan-Feng, 2018. "Reliability analysis of phased mission system with non-exponential and partially repairable components," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 119-127.
    9. Bei Wu & Brenda Ivette Garcia Maya & Nikolaos Limnios, 2021. "Using Semi-Markov Chains to Solve Semi-Markov Processes," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1419-1431, December.
    10. Li, Yan-Fu & Zio, Enrico, 2012. "A multi-state model for the reliability assessment of a distributed generation system via universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 28-36.
    11. Zhou, Jie & Lin, Haifei & Li, Shugang & Jin, Hongwei & Zhao, Bo & Liu, Shihao, 2023. "Leakage diagnosis and localization of the gas extraction pipeline based on SA-PSO BP neural network," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    12. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    13. Bao, Yuequan & Xiang, Zhengliang & Li, Hui, 2021. "Adaptive subset searching-based deep neural network method for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    14. Schryen, Guido, 2020. "Parallel computational optimization in operations research: A new integrative framework, literature review and research directions," European Journal of Operational Research, Elsevier, vol. 287(1), pages 1-18.
    15. Zhao, Zeqi & Bin Liang, & Wang, Xueqian & Lu, Weining, 2017. "Remaining useful life prediction of aircraft engine based on degradation pattern learning," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 74-83.
    16. Stover, Oliver & Karve, Pranav & Mahadevan, Sankaran, 2023. "Reliability and risk metrics to assess operational adequacy and flexibility of power grids," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    17. Chen, Qian & Zuo, Lili & Wu, Changchun & Bu, Yaran & Lu, Yifei & Huang, Yanfei & Chen, Feng, 2020. "Short-term supply reliability assessment of a gas pipeline system under demand variations," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    18. Ding, Yi & Cui, Wenqi & Zhang, Shujun & Hui, Hongxun & Qiu, Yiwei & Song, Yonghua, 2019. "Multi-state operating reserve model of aggregate thermostatically-controlled-loads for power system short-term reliability evaluation," Applied Energy, Elsevier, vol. 241(C), pages 46-58.
    19. Roy, Atin & Chakraborty, Subrata, 2022. "Reliability analysis of structures by a three-stage sequential sampling based adaptive support vector regression model," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    20. Gregory Levitin, 2005. "The Universal Generating Function in Reliability Analysis and Optimization," Springer Series in Reliability Engineering, Springer, number 978-1-84628-245-4, August.
    21. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2017. "Optimal loading of series parallel systems with arbitrary element time-to-failure and time-to-repair distributions," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 34-44.
    22. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    23. Cao, Bohan & Yin, Qishuai & Guo, Yingying & Yang, Jin & Zhang, Laibin & Wang, Zhenquan & Tyagi, Mayank & Sun, Ting & Zhou, Xu, 2023. "Field data analysis and risk assessment of shallow gas hazards based on neural networks during industrial deep-water drilling," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ruixing & An, Liqiang & He, Lun & Yang, Xinmeng & Huang, Zenghao, 2024. "Reliability analysis and inverse optimization method for floating wind turbines driven by dual meta-models combining transient-steady responses," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chi & Shafieezadeh, Abdollah, 2022. "Simulation-free reliability analysis with active learning and Physics-Informed Neural Network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Peng, Rui & Xiao, Hui & Liu, Hanlin, 2017. "Reliability of multi-state systems with a performance sharing group of limited size," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 164-170.
    3. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Zheng, Xiaohu & Yao, Wen & Zhang, Yunyang & Zhang, Xiaoya, 2022. "Consistency regularization-based deep polynomial chaos neural network method for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    5. Niu, Yi-Feng & Gao, Zi-You & Lam, William H.K., 2017. "A new efficient algorithm for finding all d-minimal cuts in multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 151-163.
    6. Xiao, Hui & Shi, Daimin & Ding, Yi & Peng, Rui, 2016. "Optimal loading and protection of multi-state systems considering performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 88-95.
    7. Tazi, Nacef & Châtelet, Eric & Bouzidi, Youcef, 2018. "How combined performance and propagation of failure dependencies affect the reliability of a MSS," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 531-541.
    8. Li, Xiang-Yu & Huang, Hong-Zhong & Li, Yan-Feng & Xiong, Xiaoyan, 2021. "A Markov regenerative process model for phased mission systems under internal degradation and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Fang, Chen & Cui, Lirong, 2021. "Reliability evaluation for balanced systems with auto-balancing mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    10. Roy, Atin & Chakraborty, Subrata, 2023. "Support vector machine in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    11. Saraygord Afshari, Sajad & Enayatollahi, Fatemeh & Xu, Xiangyang & Liang, Xihui, 2022. "Machine learning-based methods in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    12. Pepper, Nick & Crespo, Luis & Montomoli, Francesco, 2022. "Adaptive learning for reliability analysis using Support Vector Machines," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    13. Cheng, Chen & Yang, Jun & Li, Lei, 2021. "Reliability evaluation of a k-out-of-n(G)-subsystem based multi-state phased mission system with common bus performance sharing subjected to common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. Shao, Changzheng & Ding, Yi, 2020. "Two-interdependent-performance multi-state system: Definitions and reliability evaluation," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    15. Miao, Xingyuan & Zhao, Hong, 2023. "Novel method for residual strength prediction of defective pipelines based on HTLBO-DELM model," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    16. Tian, Tianzi & Yang, Jun & Li, Lei & Wang, Ning, 2023. "Reliability assessment of performance-based balanced systems with rebalancing mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    17. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    18. Phan, Hieu Chi & Dhar, Ashutosh Sutra & Bui, Nang Duc, 2023. "Reliability assessment of pipelines crossing strike-slip faults considering modeling uncertainties using ANN models," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    19. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimizing uploading and downloading pace distribution in system with two non-identical storage units," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    20. Wang, Guanjun & Duan, Fengjun & Zhou, Yifan, 2018. "Reliability evaluation of multi-state series systems with performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 58-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023005185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.