IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v241y2024ics0951832023005707.html
   My bibliography  Save this article

Modeling the evolution of industrial accidents triggered by natural disasters using dynamic graphs: A case study of typhoon-induced domino accidents in storage tank areas

Author

Listed:
  • Lan, Meng
  • Gardoni, Paolo
  • Weng, Wenguo
  • Shen, Kaixin
  • He, Zhichao
  • Pan, Rongliang

Abstract

Technological accidents triggered by natural disasters (Natech) have become a significant threat to the safety of coastal energy infrastructure. The domino accidents involved could propagate rapidly in a short duration and amplify an accident exponentially. In previous studies of Natech-related domino accidents, the scope of natural disasters was mainly focused on the phase of primary events, and the subsequent accident cascades were entirely driven by the domino effect. This simplification essentially weakens the real-time intervention of ongoing disasters in the evolution of accidents, making it difficult to accurately model the evolutionary patterns of domino accidents. Accordingly, a Natech-related domino evolution graph (NT-DEG) is proposed in this paper for dynamic modeling of accident evolution under the real-time disturbance of natural disasters. In addition, a stochastic process and a deterministic process are innovatively used to control the generation of primary events and the update of the evolution network at each timestamp. Moreover, using a dynamic community detection algorithm and graph metrics, an identification method for critical units in dynamic domino accidents is proposed. The application of NT-DEG to typhoon-related Natech indicates that continuous-onset natural disasters may cause new failure units that could participate in the original domino accident at any moment. This real-time intervention noticeably changes the propagation path and scale of the original accident and accelerates accident evolution. In addition, the validation based on the integrated simulation reveals that the proposed identification method can accurately identify the critical units, and the safety measures against them can noticeably reduce the scale of accident cascades.

Suggested Citation

  • Lan, Meng & Gardoni, Paolo & Weng, Wenguo & Shen, Kaixin & He, Zhichao & Pan, Rongliang, 2024. "Modeling the evolution of industrial accidents triggered by natural disasters using dynamic graphs: A case study of typhoon-induced domino accidents in storage tank areas," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023005707
    DOI: 10.1016/j.ress.2023.109656
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023005707
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2011. "Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 925-932.
    2. Tugnoli, Alessandro & Scarponi, Giordano Emrys & Antonioni, Giacomo & Cozzani, Valerio, 2022. "Quantitative assessment of domino effect and escalation scenarios caused by fragment projection," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Xia, Liqiao & Liang, Yongshi & Leng, Jiewu & Zheng, Pai, 2023. "Maintenance planning recommendation of complex industrial equipment based on knowledge graph and graph neural network," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    4. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of safety barrier performance in the mitigation of domino scenarios caused by Natech events," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    5. Elisabeth Krausmann & Ana Cruz, 2013. "Impact of the 11 March 2011, Great East Japan earthquake and tsunami on the chemical industry," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 811-828, June.
    6. Lan, Meng & Zhu, Jiping & Lo, Siuming, 2021. "Hybrid Bayesian network-based landslide risk assessment method for modeling risk for industrial facilities subjected to landslides," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Ding, Long & Khan, Faisal & Abbassi, Rouzbeh & Ji, Jie, 2019. "FSEM: An approach to model contribution of synergistic effect of fires for domino effects," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 271-278.
    8. Bernier, Carl & Padgett, Jamie E., 2019. "Fragility and risk assessment of aboveground storage tanks subjected to concurrent surge, wave, and wind loads," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Men, Jinkun & Chen, Guohua & Yang, Yunfeng & Reniers, Genserik, 2022. "An event-driven probabilistic methodology for modeling the spatial-temporal evolution of natural hazard-induced domino chain in chemical industrial parks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    10. Chen, Chao & Reniers, Genserik & Khakzad, Nima, 2019. "Integrating safety and security resources to protect chemical industrial parks from man-made domino effects: A dynamic graph approach," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    11. Lan, Meng & Gardoni, Paolo & Qin, Rongshui & Zhang, Xiao & Zhu, Jiping & Lo, Siuming, 2022. "Modeling NaTech-related domino effects in process clusters: A network-based approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    12. Khakzad, Nima & Reniers, Genserik, 2019. "Low-capacity utilization of process plants: A cost-robust approach to tackle man-made domino effects," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    13. Alileche, Nassim & Cozzani, Valerio & Reniers, Genserik & Estel, Lionel, 2015. "Thresholds for domino effects and safety distances in the process industry: A review of approaches and regulations," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 74-84.
    14. Pamela Sands Showalter & Mary Fran Myers, 1994. "Natural Disasters in the United States as Release Agents of Oil, Chemicals, or Radiological Materials Between 1980‐1989: Analysis and Recommendations," Risk Analysis, John Wiley & Sons, vol. 14(2), pages 169-182, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caratozzolo, Vincenzo & Misuri, Alessio & Cozzani, Valerio, 2022. "A generalized equipment vulnerability model for the quantitative risk assessment of horizontal vessels involved in Natech scenarios triggered by floods," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    2. Misuri, Alessio & Ricci, Federica & Sorichetti, Riccardo & Cozzani, Valerio, 2023. "The Effect of Safety Barrier Degradation on the Severity of Primary Natech Scenarios," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of risk modification due to safety barrier performance degradation in Natech events," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    4. Wu, Xingguang & Huang, Huirong & Xie, Jianyu & Lu, Meixing & Wang, Shaobo & Li, Wang & Huang, Yixuan & Yu, Weichao & Sun, Xiaobo, 2023. "A novel dynamic risk assessment method for the petrochemical industry using bow-tie analysis and Bayesian network analysis method based on the methodological framework of ARAMIS project," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Li, Xiaofeng & Chen, Guohua & Amyotte, Paul & Khan, Faisal & Alauddin, Mohammad, 2023. "Vulnerability assessment of storage tanks exposed to simultaneous fire and explosion hazards," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Men, Jinkun & Chen, Guohua & Yang, Yunfeng & Reniers, Genserik, 2022. "An event-driven probabilistic methodology for modeling the spatial-temporal evolution of natural hazard-induced domino chain in chemical industrial parks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    7. Khakzad, Nima, 2023. "A methodology based on Dijkstra's algorithm and mathematical programming for optimal evacuation in process plants in the event of major tank fires," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    8. Tugnoli, Alessandro & Scarponi, Giordano Emrys & Antonioni, Giacomo & Cozzani, Valerio, 2022. "Quantitative assessment of domino effect and escalation scenarios caused by fragment projection," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    9. Li, Qilin & Wang, Yang & Chen, Wensu & Li, Ling & Hao, Hong, 2024. "Machine learning prediction of BLEVE loading with graph neural networks," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of safety barrier performance in the mitigation of domino scenarios caused by Natech events," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    11. Lan, Meng & Gardoni, Paolo & Qin, Rongshui & Zhang, Xiao & Zhu, Jiping & Lo, Siuming, 2022. "Modeling NaTech-related domino effects in process clusters: A network-based approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    12. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    13. Bowen Guo & Wei Zhan, 2023. "Research on Integrated Scheduling of Multi-Mode Emergency Rescue for Flooding in Chemical Parks," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    14. Feng, Jian Rui & Yu, Guanghui & Zhao, Mengke & Zhang, Jiaqing & Lu, Shouxiang, 2022. "Dynamic risk assessment framework for industrial systems based on accidents chain theory: The case study of fire and explosion risk of UHV converter transformer," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    15. Martin Folch-Calvo & Francisco Brocal-Fernández & Cristina González-Gaya & Miguel A. Sebastián, 2020. "Analysis and Characterization of Risk Methodologies Applied to Industrial Parks," Sustainability, MDPI, vol. 12(18), pages 1-35, September.
    16. Ding, Long & Khan, Faisal & Ji, Jie, 2022. "A novel vulnerability model considering synergistic effect of fire and overpressure in chemical processing facilities," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    17. Yang, Yunfeng & Chen, Guohua & Reniers, Genserik, 2020. "Vulnerability assessment of atmospheric storage tanks to floods based on logistic regression," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    18. Casson Moreno, Valeria & Marroni, Giulia & Landucci, Gabriele, 2022. "Probabilistic assessment aimed at the evaluation of escalating scenarios in process facilities combining safety and security barriers," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    19. Khakzad, Nima, 2023. "A goal programming approach to multi-objective optimization of firefighting strategies in the event of domino effects," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    20. Mingqing Su & Lijun Wei & Shennan Zhou & Guoliang Yang & Rujun Wang & Yingquan Duo & Sining Chen & Mingliang Sun & Jiahang Li & Xiangbei Kong, 2022. "Study on Dynamic Probability and Quantitative Risk Calculation Method of Domino Accident in Pool Fire in Chemical Storage Tank Area," IJERPH, MDPI, vol. 19(24), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023005707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.