IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v143y2015icp74-84.html
   My bibliography  Save this article

Thresholds for domino effects and safety distances in the process industry: A review of approaches and regulations

Author

Listed:
  • Alileche, Nassim
  • Cozzani, Valerio
  • Reniers, Genserik
  • Estel, Lionel

Abstract

Domino effects resulting in cascading events in the chemical and process industries are well known causes of severe accident scenarios. Although the threats due to domino effects are recognized since at least three decades, this is still a controversial topic when coming to its assessment. A number of different approaches are proposed in technical standards and in the scientific literature. The present contribution aims at providing a critical revision of the procedure for the identification of domino effect scenarios. An overview of current regulations for domino effect assessment is provided. The criteria resulting from the regulations are compared and discussed in the light of recent developments concerning escalation hazards and safety distance assessments.

Suggested Citation

  • Alileche, Nassim & Cozzani, Valerio & Reniers, Genserik & Estel, Lionel, 2015. "Thresholds for domino effects and safety distances in the process industry: A review of approaches and regulations," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 74-84.
  • Handle: RePEc:eee:reensy:v:143:y:2015:i:c:p:74-84
    DOI: 10.1016/j.ress.2015.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015001192
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Shuyi & Dong, Shaohua & Chen, Yinuo & Peng, Yujie & Li, Xincai, 2021. "A novel risk evaluation method for fire and explosion accidents in oil depots using bow-tie analysis and risk matrix analysis method based on cloud model theory," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Mingqing Su & Lijun Wei & Shennan Zhou & Guoliang Yang & Rujun Wang & Yingquan Duo & Sining Chen & Mingliang Sun & Jiahang Li & Xiangbei Kong, 2022. "Study on Dynamic Probability and Quantitative Risk Calculation Method of Domino Accident in Pool Fire in Chemical Storage Tank Area," IJERPH, MDPI, vol. 19(24), pages 1-18, December.
    3. Zheng Liu & Xingang Li & Xiaojing Chen, 2019. "Evacuation Traffic Management under Diffusion of Toxic Gas Based on an Improved Road Risk Level Assessment Method," Complexity, Hindawi, vol. 2019, pages 1-11, March.
    4. Lan, Meng & Gardoni, Paolo & Weng, Wenguo & Shen, Kaixin & He, Zhichao & Pan, Rongliang, 2024. "Modeling the evolution of industrial accidents triggered by natural disasters using dynamic graphs: A case study of typhoon-induced domino accidents in storage tank areas," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Yunfeng Yang & Guohua Chen & Yuanfei Zhao, 2023. "A Quantitative Framework for Propagation Paths of Natech Domino Effects in Chemical Industrial Parks: Part I—Failure Analysis," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    6. Ovidi, Federica & Zhang, Laobing & Landucci, Gabriele & Reniers, Genserik, 2021. "Agent-based model and simulation of mitigated domino scenarios in chemical tank farms," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    7. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of safety barrier performance in the mitigation of domino scenarios caused by Natech events," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    8. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of risk modification due to safety barrier performance degradation in Natech events," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    9. Yongyou Nie & Jinbu Zhao & Yiyi Zhang & Jizhi Zhou, 2020. "Risk Evaluation of “Not-In-My-Back-Yard” Conflict Potential in Facilities Group: A Case Study of Chemical Park in Xuwei New District, China," Sustainability, MDPI, vol. 12(7), pages 1-18, March.
    10. Martin Folch-Calvo & Francisco Brocal-Fernández & Cristina González-Gaya & Miguel A. Sebastián, 2020. "Analysis and Characterization of Risk Methodologies Applied to Industrial Parks," Sustainability, MDPI, vol. 12(18), pages 1-35, September.
    11. Arnaud Mignan, 2022. "Categorizing and Harmonizing Natural, Technological, and Socio-Economic Perils Following the Catastrophe Modeling Paradigm," IJERPH, MDPI, vol. 19(19), pages 1-32, October.
    12. Feng, Jian Rui & Yu, Guanghui & Zhao, Mengke & Zhang, Jiaqing & Lu, Shouxiang, 2022. "Dynamic risk assessment framework for industrial systems based on accidents chain theory: The case study of fire and explosion risk of UHV converter transformer," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    13. Yunfeng Yang & Guohua Chen & Yuanfei Zhao, 2023. "A Quantitative Framework for Propagation Paths of Natech Domino Effects in Chemical Industrial Parks: Part II—Risk Assessment and Mitigation System," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    14. Tugnoli, Alessandro & Scarponi, Giordano Emrys & Antonioni, Giacomo & Cozzani, Valerio, 2022. "Quantitative assessment of domino effect and escalation scenarios caused by fragment projection," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    15. Landucci, Gabriele & Necci, Amos & Antonioni, Giacomo & Argenti, Francesca & Cozzani, Valerio, 2017. "Risk assessment of mitigated domino scenarios in process facilities," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 37-53.
    16. Jianfeng Zhou & Genserik Reniers, 2020. "Probabilistic Analysis of Domino Effects by Using a Matrix‐Based Simulation Approach," Risk Analysis, John Wiley & Sons, vol. 40(10), pages 1913-1927, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:143:y:2015:i:c:p:74-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.