IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v231y2023ics095183202200624x.html
   My bibliography  Save this article

Novel method of dynamic event tree keeping the number of simulations in risk analysis small

Author

Listed:
  • Kaneko, Fujio
  • Yuzui, Tomohiro

Abstract

Conducting a risk analysis on nuclear plants using the dynamic event tree (DET) to improve the accuracy of consequence analysis of the system state significantly increases the number of event tree (ET) branches. Several methods have been developed to reduce the number of branches and event sequences of DET. In this study, we developed a new risk analysis method using a relatively small ET to estimate risk considering time changes in the system state of a target system, in a drastic short time. The main features of the proposed method are: to set some headings which cause the same branches on every event sequence outside of the ET for keeping it small; to set the probability distribution function or cumulative distribution function of the time to activating each of safety measures which have the monotonous relation to the risk; and to estimate the maximum and minimum risk values of every event sequence using these probabilistic distributions.

Suggested Citation

  • Kaneko, Fujio & Yuzui, Tomohiro, 2023. "Novel method of dynamic event tree keeping the number of simulations in risk analysis small," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:reensy:v:231:y:2023:i:c:s095183202200624x
    DOI: 10.1016/j.ress.2022.109009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202200624X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.109009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Yunwei & Parhizkar, Tarannom & Mosleh, Ali, 2022. "Guided simulation for dynamic probabilistic risk assessment of complex systems: Concept, method, and application," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Katrina M Groth & Matthew R Denman & Michael C Darling & Thomas B Jones & George F Luger, 2020. "Building and using dynamic risk-informed diagnosis procedures for complex system accidents," Journal of Risk and Reliability, , vol. 234(1), pages 193-207, February.
    3. Maljovec, D. & Liu, S. & Wang, B. & Mandelli, D. & Bremer, P.-T. & Pascucci, V. & Smith, C., 2016. "Analyzing simulation-based PRA data through traditional and topological clustering: A BWR station blackout case study," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 262-276.
    4. Mandelli, Diego & Yilmaz, Alper & Aldemir, Tunc & Metzroth, Kyle & Denning, Richard, 2013. "Scenario clustering and dynamic probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 146-160.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chenyushu & Cai, Baoping & Shao, Xiaoyan & Zhao, Liqian & Sui, Zhongfei & Liu, Keyang & Khan, Javed Akbar & Gao, Lei, 2023. "Dynamic risk assessment methodology of operation process for deepwater oil and gas equipment," Reliability Engineering and System Safety, Elsevier, vol. 239(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Xiaoyu & Tamaki, Hitoshi & Sugiyama, Tomoyuki & Maruyama, Yu, 2022. "Dynamic probabilistic risk assessment of nuclear power plants using multi-fidelity simulations," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    2. Park, Jong Woo & Lee, Seung Jun, 2022. "Simulation optimization framework for dynamic probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    3. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    4. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2017. "Simulation-based exploration of high-dimensional system models for identifying unexpected events," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 317-330.
    5. Hu, Yunwei & Parhizkar, Tarannom & Mosleh, Ali, 2022. "Guided simulation for dynamic probabilistic risk assessment of complex systems: Concept, method, and application," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Maidana, Renan G. & Parhizkar, Tarannom & Gomola, Alojz & Utne, Ingrid B. & Mosleh, Ali, 2023. "Supervised dynamic probabilistic risk assessment: Review and comparison of methods," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    7. Kim, Junyung & Shah, Asad Ullah Amin & Kang, Hyun Gook, 2020. "Dynamic risk assessment with bayesian network and clustering analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    8. Guo, Zehua & Dailey, Ryan & Feng, Tangtao & Zhou, Yukun & Sun, Zhongning & Corradini, Michael L & Wang, Jun, 2021. "Uncertainty analysis of ATF Cr-coated-Zircaloy on BWR in-vessel accident progression during a station blackout," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    9. He, Rui & Zhu, Jingyu & Chen, Guoming & Tian, Zhigang, 2022. "A real-time probabilistic risk assessment method for the petrochemical industry based on data monitoring," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    10. Lewis, Austin D. & Groth, Katrina M., 2022. "Metrics for evaluating the performance of complex engineering system health monitoring models," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    11. Jawon Kim & Jaesoo Kim & Hangbae Chang, 2020. "Research on Behavior-Based Data Leakage Incidents for the Sustainable Growth of an Organization," Sustainability, MDPI, vol. 12(15), pages 1-14, August.
    12. Ma, Xiaoxue & Deng, Wanyi & Qiao, Weiliang & Lan, He, 2022. "A methodology to quantify the risk propagation of hazardous events for ship grounding accidents based on directed CN," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    13. Zhao, Yunfei & Smidts, Carol, 2021. "CMS-BN: A cognitive modeling and simulation environment for human performance assessment, part 1 — methodology," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    14. Feng, Jian Rui & Yu, Guanghui & Zhao, Mengke & Zhang, Jiaqing & Lu, Shouxiang, 2022. "Dynamic risk assessment framework for industrial systems based on accidents chain theory: The case study of fire and explosion risk of UHV converter transformer," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    15. Moradi, Ramin & Cofre-Martel, Sergio & Lopez Droguett, Enrique & Modarres, Mohammad & Groth, Katrina M., 2022. "Integration of deep learning and Bayesian networks for condition and operation risk monitoring of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    16. Liu, Qiang & Tang, Aiping & Huang, Delong & Huang, Ziyuan & Zhang, Bin & Xu, Xiuchen, 2022. "Total probabilistic measure for the potential risk of regional roads exposed to landslides," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    17. Mei Liu & Boning Li & Hongjun Cui & Pin-Chao Liao & Yuecheng Huang, 2022. "Research Paradigm of Network Approaches in Construction Safety and Occupational Health," IJERPH, MDPI, vol. 19(19), pages 1-22, September.
    18. Rebollo, M.J. & Queral, C. & Jimenez, G. & Gomez-Magan, J. & Meléndez, E. & Sanchez-Perea, M., 2016. "Evaluation of the offsite dose contribution to the global risk in a Steam Generator Tube Rupture scenario," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 32-48.
    19. Maljovec, D. & Liu, S. & Wang, B. & Mandelli, D. & Bremer, P.-T. & Pascucci, V. & Smith, C., 2016. "Analyzing simulation-based PRA data through traditional and topological clustering: A BWR station blackout case study," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 262-276.
    20. Mustafa, Faizan E & Ahmed, Ijaz & Basit, Abdul & Alvi, Um-E-Habiba & Malik, Saddam Hussain & Mahmood, Atif & Ali, Paghunda Roheela, 2023. "A review on effective alarm management systems for industrial process control: Barriers and opportunities," International Journal of Critical Infrastructure Protection, Elsevier, vol. 41(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:231:y:2023:i:c:s095183202200624x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.