IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v222y2022ics0951832022000813.html
   My bibliography  Save this article

The prediction of potential risk path in railway traffic events

Author

Listed:
  • Gu, Shuang
  • Li, Keping
  • Feng, Tao
  • Yan, Dongyang
  • Liu, Yanyan

Abstract

In railway traffic operation, the prediction of risk path is one of the important issues because it can ensure the potential consequences are effectively mitigated and controlled to prevent the domino effect. However, it is quite difficult to mine the potential information and investigate the complex dependency in failure text data, which makes the prediction of potential risk path challenging. In this paper, we propose a new network-based risk prediction model to investigate the propagation path of potential risk and reduce the risk of cascade failures. Three kinds of information hidden in network connections are considered: local structural information, global structural information and attribute information. The model uses the keyword extraction method of text data for data preprocessing. The breadth-first search-based algorithm is improved to identify the meta-paths. The co-occurrence matrix and the association matrix are considered to play a role in the model. In order to verify the feasibility and advantages of the model, we use a dataset consisting of traffic events in Beijing subway as a case study. Results of the comparative analysis show that the proposed model not only can effectively predict the potential risk path, but also provides the best results in terms of ROC, AUC and Precision.

Suggested Citation

  • Gu, Shuang & Li, Keping & Feng, Tao & Yan, Dongyang & Liu, Yanyan, 2022. "The prediction of potential risk path in railway traffic events," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:reensy:v:222:y:2022:i:c:s0951832022000813
    DOI: 10.1016/j.ress.2022.108409
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022000813
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108409?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Jintao & Schmid, Felix & Li, Keping & Zheng, Wei, 2021. "A knowledge graph-based approach for exploring railway operational accidents," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    2. J. H. M. Tah & V. Carr, 2000. "A proposal for construction project risk assessment using fuzzy logic," Construction Management and Economics, Taylor & Francis Journals, vol. 18(4), pages 491-500.
    3. Liu Yang & Keping Li & Dan Zhao & Shuang Gu & Dongyang Yan, 2019. "A Network Method for Identifying the Root Cause of High-Speed Rail Faults Based on Text Data," Energies, MDPI, vol. 12(10), pages 1-17, May.
    4. Li, Zhongping & Cui, Lirong & Chen, Jianhui, 2018. "Traffic accident modelling via self-exciting point processes," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 312-320.
    5. Huang, Wencheng & Zhang, Yue & Kou, Xingyi & Yin, Dezhi & Mi, Rongwei & Li, Linqing, 2020. "Railway dangerous goods transportation system risk analysis: An Interpretive Structural Modeling and Bayesian Network combining approach," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    6. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    7. Liu, Jintao & Schmid, Felix & Zheng, Wei & Zhu, Jiebei, 2019. "Understanding railway operational accidents using network theory," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 218-231.
    8. Lam, C.Y. & Tai, K., 2020. "Network topological approach to modeling accident causations and characteristics: Analysis of railway incidents in Japan," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    9. Chen, Tzu-Ying & Jou, Rong-Chang, 2019. "Using HLM to investigate the relationship between traffic accident risk of private vehicles and public transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 148-161.
    10. Rungskunroch, Panrawee & Jack, Anson & Kaewunruen, Sakdirat, 2021. "Benchmarking on railway safety performance using Bayesian inference, decision tree and petri-net techniques based on long-term accidental data sets," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    11. Fa, Ziwei & Li, Xinchun & Qiu, Zunxiang & Liu, Quanlong & Zhai, Zhengyuan, 2021. "From correlation to causality: Path analysis of accident-causing factors in coal mines from the perspective of human, machinery, environment and management," Resources Policy, Elsevier, vol. 73(C).
    12. Hou, Lei & Wu, Xingguang & Wu, Zhuang & Wu, Shouzhi, 2020. "Pattern identification and risk prediction of domino effect based on data mining methods for accidents occurred in the tank farm," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. Huang, Wencheng & Zhang, Yue & Yu, Yaocheng & Xu, Yifei & Xu, Minhao & Zhang, Rui & De Dieu, Gatesi Jean & Yin, Dezhi & Liu, Zhanru, 2021. "Historical data-driven risk assessment of railway dangerous goods transportation system: Comparisons between Entropy Weight Method and Scatter Degree Method," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    14. Liu, Jie & Xu, Yubo & Wang, Lisong, 2022. "Fault information mining with causal network for railway transportation system," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    15. Singh, Kritika & Maiti, J, 2020. "A novel data mining approach for analysis of accident paths and performance assessment of risk control systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    16. Wang, Qun & Jia, Guozhu & Jia, Yuning & Song, Wenyan, 2021. "A new approach for risk assessment of failure modes considering risk interaction and propagation effects," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Ryder, Benjamin & Dahlinger, Andre & Gahr, Bernhard & Zundritsch, Peter & Wortmann, Felix & Fleisch, Elgar, 2019. "Spatial prediction of traffic accidents with critical driving events – Insights from a nationwide field study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 611-626.
    18. Noguchi, H. & Hienuki, S. & Fuse, M., 2020. "Network theory-based accident scenario analysis for hazardous material transport: A case study of liquefied petroleum gas transport in japan," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    19. Shakibian, Hadi & Charkari, Nasrollah Moghadam, 2018. "Statistical similarity measures for link prediction in heterogeneous complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 248-263.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Jian & Luo, Cheng & Ma, Kaijiang, 2023. "Risk coupling analysis of road transportation accidents of hazardous materials in complicated maritime environment," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Xue, Gang & Liu, Shifeng & Ren, Long & Gong, Daqing, 2023. "A data aggregation-based spatiotemporal model for rail transit risk path forecasting," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    3. Rose, Rodrigo L. & Puranik, Tejas G. & Mavris, Dimitri N. & Rao, Arjun H., 2022. "Application of structural topic modeling to aviation safety data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hengqi & Geng, Hua, 2023. "A methodology to identify and assess high-risk causes for electrical personal accidents based on directed weighted CN," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Ma, Xiaoxue & Deng, Wanyi & Qiao, Weiliang & Lan, He, 2022. "A methodology to quantify the risk propagation of hazardous events for ship grounding accidents based on directed CN," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    3. Laihao Ma & Xiaoxue Ma & Jingwen Zhang & Qing Yang & Kai Wei, 2021. "Identifying the Weaker Function Links in the Hazardous Chemicals Road Transportation System in China," IJERPH, MDPI, vol. 18(13), pages 1-17, July.
    4. Izdebski, Mariusz & Jacyna-Gołda, Ilona & Gołda, Paweł, 2022. "Minimisation of the probability of serious road accidents in the transport of dangerous goods," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Singh, Prashant & Pasha, Junayed & Moses, Ren & Sobanjo, John & Ozguven, Eren E. & Dulebenets, Maxim A., 2022. "Development of exact and heuristic optimization methods for safety improvement projects at level crossings under conflicting objectives," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    6. Li, Guoqi & Pu, Gang & Yang, Jiaxin & Jiang, Xinguo, 2024. "A multidimensional quantitative risk assessment framework for dense areas of stay points for urban HazMat vehicles," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Huang, Wencheng & Zhang, Yue & Yin, Dezhi & Zuo, Borui & Liu, Zhanru, 2021. "Urban bus accident analysis: based on a Tropos Goal Risk-Accident Framework considering Learning From Incidents process," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Tao, Longlong & Wu, Jie & Ge, Daochuan & Chen, Liwei & Sun, Ming, 2022. "Risk-informed based comprehensive path-planning method for radioactive materials road transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    9. Dindar, Serdar & Kaewunruen, Sakdirat & An, Min, 2022. "A hierarchical Bayesian-based model for hazard analysis of climate effect on failures of railway turnout components," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    10. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Casualty analysis methodology and taxonomy for FPSO accident analysis," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    11. Huang, Wencheng & Yin, Dezhi & Xu, Yifei & Zhang, Rui & Xu, Minhao, 2022. "Using N-K Model to quantitatively calculate the variability in Functional Resonance Analysis Method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    12. Suo Qi & Wang Liyuan & Yao Tianzi & Wang Zihao, 2021. "Promoting Metro Operation Safety by Exploring Metro Operation Accident Network," Journal of Systems Science and Information, De Gruyter, vol. 9(4), pages 455-468, August.
    13. Marjana Čubranić-Dobrodolac & Libor Švadlenka & Svetlana Čičević & Aleksandar Trifunović & Momčilo Dobrodolac, 2020. "Using the Interval Type-2 Fuzzy Inference Systems to Compare the Impact of Speed and Space Perception on the Occurrence of Road Traffic Accidents," Mathematics, MDPI, vol. 8(9), pages 1-19, September.
    14. Huang, Wencheng & Zhang, Rui & Xu, Minhao & Yu, Yaocheng & Xu, Yifei & De Dieu, Gatesi Jean, 2020. "Risk state changes analysis of railway dangerous goods transportation system: Based on the cusp catastrophe model," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    15. Martin Folch-Calvo & Francisco Brocal-Fernández & Cristina González-Gaya & Miguel A. Sebastián, 2020. "Analysis and Characterization of Risk Methodologies Applied to Industrial Parks," Sustainability, MDPI, vol. 12(18), pages 1-35, September.
    16. Catelani, Marcantonio & Ciani, Lorenzo & Guidi, Giulia & Patrizi, Gabriele, 2021. "An enhanced SHERPA (E-SHERPA) method for human reliability analysis in railway engineering," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    17. Zhang, Hengqi & Geng, Hua & Zeng, Huarong & Jiang, Li, 2023. "Dynamic risk evaluation and control of electrical personal accidents," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    18. Tofighy, Sajjad & Charkari, Nasrollah Moghadam & Ghaderi, Foad, 2022. "Link prediction in multiplex networks using intralayer probabilistic distance and interlayer co-evolving factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    19. Liu, Jintao & Schmid, Felix & Li, Keping & Zheng, Wei, 2021. "A knowledge graph-based approach for exploring railway operational accidents," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    20. Rungskunroch, Panrawee & Jack, Anson & Kaewunruen, Sakdirat, 2021. "Benchmarking on railway safety performance using Bayesian inference, decision tree and petri-net techniques based on long-term accidental data sets," Reliability Engineering and System Safety, Elsevier, vol. 213(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:222:y:2022:i:c:s0951832022000813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.