IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v185y2019icp175-191.html
   My bibliography  Save this article

An improved polynomial-based nonlinear variable importance measure and its application to degradation assessment for high-voltage transformer under imbalance data

Author

Listed:
  • Cheng, Jin
  • Wang, Jian
  • Wu, Xuezhou
  • Wang, Shuo

Abstract

Variable importance measures (VIM) are widely used in reliability engineering. Traditional nonlinear VIMs are difficult to simultaneously obtain both most important variable combination and an explanatory function. Variable combination is the variable set that fits better than redundant variables, but each of them may fits worse than redundant variables. In this paper, a practical and improved polynomial-based VIM is proposed for nonlinear variable relationships with an unknown functional form. Polynomial approximation, combined with a novel ensemble-based product selection, is applied to gain an explanatory linear model consisting of important product combination, which is selected accurately by the proposed product selection. The simulations show the effectiveness of the proposed method on nonlinear VIM. Furthermore, the approach is applied in long-term degradation assessment of high voltage transformer under large imbalance samples. In the experiment, the details of important relationships among input variables can be measured under a powerful and competitive assessment model. The proposed approach paves the way for VIM in complex nonlinear reliability systems with multiple dependent inputs.

Suggested Citation

  • Cheng, Jin & Wang, Jian & Wu, Xuezhou & Wang, Shuo, 2019. "An improved polynomial-based nonlinear variable importance measure and its application to degradation assessment for high-voltage transformer under imbalance data," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 175-191.
  • Handle: RePEc:eee:reensy:v:185:y:2019:i:c:p:175-191
    DOI: 10.1016/j.ress.2018.12.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018307750
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.12.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fischer, Andreas, 2015. "How to determine the unique contributions of input-variables to the nonlinear regression function of a multilayer perceptron," Ecological Modelling, Elsevier, vol. 309, pages 60-63.
    2. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    3. Pan, Qiujing & Dias, Daniel, 2017. "Sliced inverse regression-based sparse polynomial chaos expansions for reliability analysis in high dimensions," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 484-493.
    4. Enrique L Droguett & Isis D Lins & Márcio C Moura & Enrico Zio & Carlos M Jacinto, 2015. "Variable selection and uncertainty analysis of scale growth rate under pre-salt oil wells conditions using support vector regression," Journal of Risk and Reliability, , vol. 229(4), pages 319-326, August.
    5. Xiaoming Xue & Jianzhong Zhou & Yongchuan Zhang & Weibo Zhang & Wenlong Zhu, 2014. "An improved ensemble empirical mode decomposition method and its application to pressure pulsation analysis of hydroelectric generator unit," Journal of Risk and Reliability, , vol. 228(6), pages 543-557, December.
    6. Péguin-Feissolle, Anne & Strikholm, Birgit & Teräsvirta, Timo, 2007. "Testing the Granger noncausality hypothesis in stationary nonlinear models of unknown functional form," SSE/EFI Working Paper Series in Economics and Finance 672, Stockholm School of Economics, revised 18 Jan 2012.
    7. Ge, Qiao & Menendez, Monica, 2017. "Extending Morris method for qualitative global sensitivity analysis of models with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 28-39.
    8. Dai, Hongzhe & Zhang, Boyi & Wang, Wei, 2015. "A multiwavelet support vector regression method for efficient reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 132-139.
    9. Gehl, Pierre & Cavalieri, Francesco & Franchin, Paolo, 2018. "Approximate Bayesian network formulation for the rapid loss assessment of real-world infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 80-93.
    10. Jingwen Song & Zhenzhou Lu & Pengfei Wei & Yanping Wang, 2015. "Global sensitivity analysis for model with random inputs characterized by probability-box," Journal of Risk and Reliability, , vol. 229(3), pages 237-253, June.
    11. Awad, Mahmoud, 2017. "Analyzing sensitivity measures using moment-matching technique," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 90-99.
    12. Kim, Taeyong & Song, Junho, 2018. "Generalized Reliability Importance Measure (GRIM) using Gaussian mixture," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 105-115.
    13. Wei, Pengfei & Liu, Fuchao & Tang, Chenghu, 2018. "Reliability and reliability-based importance analysis of structural systems using multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 183-195.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ariannik, Mohamadreza & Razi-Kazemi, Ali A. & Lehtonen, Matti, 2020. "An approach on lifetime estimation of distribution transformers based on degree of polymerization," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    2. El Moçayd, Nabil & Shadi Mohamed, M. & Ouazar, Driss & Seaid, Mohammed, 2020. "Stochastic model reduction for polynomial chaos expansion of acoustic waves using proper orthogonal decomposition," Reliability Engineering and System Safety, Elsevier, vol. 195(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roy, Atin & Chakraborty, Subrata, 2022. "Reliability analysis of structures by a three-stage sequential sampling based adaptive support vector regression model," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Shang, Xiaobing & Su, Li & Fang, Hai & Zeng, Bowen & Zhang, Zhi, 2023. "An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    4. Zhou, Xiaoyi & Lu, Pan & Zheng, Zijian & Tolliver, Denver & Keramati, Amin, 2020. "Accident Prediction Accuracy Assessment for Highway-Rail Grade Crossings Using Random Forest Algorithm Compared with Decision Tree," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    5. Wei, Pengfei & Song, Jingwen & Lu, Zhenzhou & Yue, Zhufeng, 2016. "Time-dependent reliability sensitivity analysis of motion mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 107-120.
    6. Liu, Fuchao & Wei, Pengfei & Tang, Chenghu & Wang, Pan & Yue, Zhufeng, 2019. "Global sensitivity analysis for multivariate outputs based on multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 287-298.
    7. Dang, Chao & Xu, Jun, 2020. "Unified reliability assessment for problems with low- to high-dimensional random inputs using the Laplace transform and a mixture distribution," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    8. Wang, Jinsheng & Xu, Guoji & Yuan, Peng & Li, Yongle & Kareem, Ahsan, 2024. "An efficient and versatile Kriging-based active learning method for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Zhou, Yicheng & Lu, Zhenzhou & Yun, Wanying, 2020. "Active sparse polynomial chaos expansion for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    10. Xiao, Mi & Zhang, Jinhao & Gao, Liang, 2021. "A Kriging-assisted sampling method for reliability analysis of structures with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    11. Asma Shaheen & Javed Iqbal, 2018. "Spatial Distribution and Mobility Assessment of Carcinogenic Heavy Metals in Soil Profiles Using Geostatistics and Random Forest, Boruta Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    12. Xu, Jun & Wang, Ding, 2019. "Structural reliability analysis based on polynomial chaos, Voronoi cells and dimension reduction technique," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 329-340.
    13. Matteo Rucco & Giovanna Viticchi & Lorenzo Falsetti, 2020. "Towards Personalized Diagnosis of Glioblastoma in Fluid-Attenuated Inversion Recovery (FLAIR) by Topological Interpretable Machine Learning," Mathematics, MDPI, vol. 8(5), pages 1-27, May.
    14. Phan, Hieu Chi & Dhar, Ashutosh Sutra & Bui, Nang Duc, 2023. "Reliability assessment of pipelines crossing strike-slip faults considering modeling uncertainties using ANN models," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    15. Wang, Tianzhe & Chen, Zequan & Li, Guofa & He, Jialong & Liu, Chao & Du, Xuejiao, 2024. "A novel method for high-dimensional reliability analysis based on activity score and adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    16. Yun, Wanying & Lu, Zhenzhou & Feng, Kaixuan & Li, Luyi, 2019. "An elaborate algorithm for analyzing the Borgonovo moment-independent sensitivity by replacing the probability density function estimation with the probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 99-108.
    17. Daiki Maki & Yasushi Ota, 2019. "Robust tests for ARCH in the presence of the misspecified conditional mean: A comparison of nonparametric approches," Papers 1907.12752, arXiv.org, revised Sep 2019.
    18. Mohamed Zine & Fouzi Harrou & Mohammed Terbeche & Mohammed Bellahcene & Abdelkader Dairi & Ying Sun, 2023. "E-Learning Readiness Assessment Using Machine Learning Methods," Sustainability, MDPI, vol. 15(11), pages 1-22, June.
    19. Masayoshi Mase & Art B. Owen & Benjamin B. Seiler, 2021. "Cohort Shapley value for algorithmic fairness," Papers 2105.07168, arXiv.org.
    20. Sheue Li Ong & Chong Mun Ho, 2014. "Testing For Linear And Non-Linear Granger Non-Causality Hypothesis Between Stock And Bond: The Cases Of Malaysia And Singapore," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 59(05), pages 1-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:185:y:2019:i:c:p:175-191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.