IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v167y2017icp58-66.html
   My bibliography  Save this article

Reliability modeling of mixtures of one-shot units under thermal cyclic stresses

Author

Listed:
  • Cheng, Yao
  • Elsayed, Elsayed A.

Abstract

Modeling components’ thermal fatigue life due to cyclic temperature fluctuation based on Coffin–Mason principle has been extensively investigated. However, sparse research assesses the thermal fatigue life by providing the reliability metrics of components/systems under thermal fatigue. The Birnbaum–Saunders (BS) distribution is developed to model the unit's fatigue failure induced by mechanical stresses and provides the unit's reliability metrics. In this paper, we investigate a generalized Birnbaum–Saunders (GBS) distribution and its performance in predicting fatigue failure caused by thermal cyclic stresses. We then apply the GBS distribution to model the reliability metrics of a system with mixtures of nonhomogeneous one-shot units subject to thermal fatigue. An extensive simulation model is developed to validate the system reliability metrics accuracy. Numerical examples are presented to illustrate the use of the models.

Suggested Citation

  • Cheng, Yao & Elsayed, Elsayed A., 2017. "Reliability modeling of mixtures of one-shot units under thermal cyclic stresses," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 58-66.
  • Handle: RePEc:eee:reensy:v:167:y:2017:i:c:p:58-66
    DOI: 10.1016/j.ress.2017.05.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017301655
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.05.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Newby, Martin, 2008. "Monitoring and maintenance of spares and one shot devices," Reliability Engineering and System Safety, Elsevier, vol. 93(4), pages 588-594.
    2. Kundu, Debasis & Kannan, Nandini & Balakrishnan, N., 2008. "On the hazard function of Birnbaum-Saunders distribution and associated inference," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2692-2702, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Yao & Elsayed, Elsayed A., 2018. "Reliability modeling and optimization of operational use of one-shot units," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 27-36.
    2. Zhu, Xiaojun & Liu, Kai & He, Mu & Balakrishnan, N., 2021. "Reliability estimation for one-shot devices under cyclic accelerated life-testing," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Ling, M.H. & Hu, X.W., 2020. "Optimal design of simple step-stress accelerated life tests for one-shot devices under Weibull distributions," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    4. Ye, Xuerong & Hu, Yifan & Zheng, Bokai & Chen, Cen & Zhai, Guofu, 2022. "A new class of multi-stress acceleration models with interaction effects and its extension to accelerated degradation modelling," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Man-Ho Ling & Narayanaswamy Balakrishnan & Chenxi Yu & Hon Yiu So, 2021. "Inference for One-Shot Devices with Dependent k -Out-of- M Structured Components under Gamma Frailty," Mathematics, MDPI, vol. 9(23), pages 1-24, November.
    6. Zhu, Xiaojun & Balakrishnan, N., 2022. "One-shot device test data analysis using non-parametric and semi-parametric inferential methods and applications," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhatti, Chad R., 2010. "The Birnbaum–Saunders autoregressive conditional duration model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(10), pages 2062-2078.
    2. Ortega, Edwin M.M. & Cordeiro, Gauss M. & Lemonte, Artur J., 2012. "A log-linear regression model for the β-Birnbaum–Saunders distribution with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 698-718.
    3. Ziane Yasmina & Zougab Nabil & Adjabi Smail, 2021. "Body tail adaptive kernel density estimation for nonnegative heavy-tailed data," Monte Carlo Methods and Applications, De Gruyter, vol. 27(1), pages 57-69, March.
    4. Fang, Longxiang & Zhu, Xiaojun & Balakrishnan, N., 2016. "Stochastic comparisons of parallel and series systems with heterogeneous Birnbaum–Saunders components," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 131-136.
    5. Ramesh C. Gupta & Debasis Kundu, 2011. "Weighted inverse Gaussian -- a versatile lifetime model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2695-2708, February.
    6. Wang, Bing Xing, 2012. "Generalized interval estimation for the Birnbaum–Saunders distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4320-4326.
    7. Cheng, Yao & Elsayed, Elsayed A., 2018. "Reliability modeling and optimization of operational use of one-shot units," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 27-36.
    8. Lemonte, Artur J., 2013. "A new extended Birnbaum–Saunders regression model for lifetime modeling," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 34-50.
    9. Dan Xu & Jiaolan He & Zhou Yang, 2022. "Reliability prediction based on Birnbaum–Saunders model and its application to smart meter," Annals of Operations Research, Springer, vol. 312(1), pages 519-532, May.
    10. Kundu, Debasis & Balakrishnan, N. & Jamalizadeh, Ahad, 2013. "Generalized multivariate Birnbaum–Saunders distributions and related inferential issues," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 230-244.
    11. Azevedo, Cecilia & Leiva, Víctor & Athayde, Emilia & Balakrishnan, N., 2012. "Shape and change point analyses of the Birnbaum–Saunders-t hazard rate and associated estimation," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3887-3897.
    12. Helton Saulo & Jeremias Leão & Víctor Leiva & Robert G. Aykroyd, 2019. "Birnbaum–Saunders autoregressive conditional duration models applied to high-frequency financial data," Statistical Papers, Springer, vol. 60(5), pages 1605-1629, October.
    13. Wu, Shuo-Jye & Hsu, Chu-Chun & Huang, Syuan-Rong, 2020. "Optimal designs and reliability sampling plans for one-shot devices with cost considerations," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    14. Cordeiro, Gauss M. & Lemonte, Artur J., 2011. "The [beta]-Birnbaum-Saunders distribution: An improved distribution for fatigue life modeling," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1445-1461, March.
    15. Byun, Manhee & Choe, Changgwon & Cheon, Seunghyun & Lee, Aejin & Lim, Hankwon, 2022. "Statistical and stochastic feasibility studies of potential liquid organic hydrogen carriers in a membrane reactor for simultaneous hydrogen storage and production: Technical, economic, and environmen," Renewable Energy, Elsevier, vol. 195(C), pages 1393-1411.
    16. N. Balakrishnan & Xiaojun Zhu, 2015. "Inference for the bivariate Birnbaum–Saunders lifetime regression model and associated inference," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 853-872, October.
    17. Li, Ai-Ping & Xie, Feng-Chang, 2012. "Diagnostics for a class of survival regression models with heavy-tailed errors," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4204-4214.
    18. Zhu, Xiaojun & Liu, Kai & He, Mu & Balakrishnan, N., 2021. "Reliability estimation for one-shot devices under cyclic accelerated life-testing," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    19. Longxiang Fang & N. Balakrishnan, 2018. "Ordering properties of the smallest order statistics from generalized Birnbaum–Saunders models with associated random shocks," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(1), pages 19-35, January.
    20. Zhao, Qian Qian & Yun, Won Young, 2019. "Storage availability of one-shot system under periodic inspection considering inspection error," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 120-133.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:167:y:2017:i:c:p:58-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.