IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v146y2016icp33-38.html
   My bibliography  Save this article

On the use of conservatism in risk assessments

Author

Listed:
  • Aven, Terje

Abstract

It is common to use conservatism in risk assessments, replacing uncertain quantities with values that lead to a higher level of risk. It is argued that the approach represents a practical method for dealing with uncertainties and lack of knowledge in risk assessment. If the computed probabilities meet the pre-defined criteria with the conservative quantities, there is strong support for the “real risk†to meet these criteria. In this paper we look more closely into this practice, the main aims being to clarify what it actually means and what the implications are, as well as providing some recommendations. The paper concludes that conservatism should be avoided in risk assessments – “best judgements†should be the ruling thinking, to allow for meaningful comparisons of options. By incorporating sensitivity analyses and strength of knowledge judgements for the background knowledge on which the assigned probabilities are based, the robustness of the conclusions can be more adequately assessed.

Suggested Citation

  • Aven, Terje, 2016. "On the use of conservatism in risk assessments," Reliability Engineering and System Safety, Elsevier, vol. 146(C), pages 33-38.
  • Handle: RePEc:eee:reensy:v:146:y:2016:i:c:p:33-38
    DOI: 10.1016/j.ress.2015.10.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015002938
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.10.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bjerga, Torbjørn & Aven, Terje & Zio, Enrico, 2014. "An illustration of the use of an approach for treating model uncertainties in risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 46-53.
    2. Zio, E., 2009. "Reliability engineering: Old problems and new challenges," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 125-141.
    3. Amundrud, Øystein & Aven, Terje, 2015. "On how to understand and acknowledge risk," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 42-47.
    4. Viscusi, W. Kip & Hamilton, James T. & Dockins, P. Christen, 1997. "Conservative versus Mean Risk Assessments: Implications for Superfund Policies," Journal of Environmental Economics and Management, Elsevier, vol. 34(3), pages 187-206, November.
    5. Terje Aven & Ortwin Renn, 2010. "Risk Management and Governance," Risk, Governance and Society, Springer, number 978-3-642-13926-0, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicola Pedroni & Enrico Zio & Alberto Pasanisi & Mathieu Couplet, 2017. "A critical discussion and practical recommendations on some issues relevant to the non-probabilistic treatment of uncertainty in engineering risk assessment," Post-Print hal-01652230, HAL.
    2. Terje Aven, 2020. "Risk Science Contributions: Three Illustrating Examples," Risk Analysis, John Wiley & Sons, vol. 40(10), pages 1889-1899, October.
    3. Flage, Roger & Askeland, Tore, 2020. "Assumptions in quantitative risk assessments: When explicit and when tacit?," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    4. Aven, Terje, 2020. "Three influential risk foundation papers from the 80s and 90s: Are they still state-of-the-art?," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    5. Berner, Christine Louise & Flage, Roger, 2017. "Creating risk management strategies based on uncertain assumptions and aspects from assumption-based planning," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 10-19.
    6. Medeiros, Cristina Pereira & da Silva, Lucas Borges Leal & Alencar, Marcelo Hazin & de Almeida, Adiel Teixeira, 2021. "A new method for managing multidimensional risks in Natural Gas Pipelines based on non-Expected Utility," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    7. Thomas Ying‐Jeh Chen & Valerie Nicole Washington & Terje Aven & Seth David Guikema, 2020. "Review and Evaluation of the J100‐10 Risk and Resilience Management Standard for Water and Wastewater Systems," Risk Analysis, John Wiley & Sons, vol. 40(3), pages 608-623, March.
    8. Nicola Pedroni & Enrico Zio & Alberto Pasanisi & Mathieu Couplet, 2017. "A Critical Discussion and Practical Recommendations on Some Issues Relevant to the Nonprobabilistic Treatment of Uncertainty in Engineering Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1315-1340, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Terje Aven, 2017. "Improving the foundation and practice of reliability engineering," Journal of Risk and Reliability, , vol. 231(3), pages 295-305, June.
    2. Rokstad, Marius Møller & Ugarelli, Rita Maria, 2015. "Minimising the total cost of renewal and risk of water infrastructure assets by grouping renewal interventions," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 148-160.
    3. Ruipeng Tong & Cunli Zhai & Qingli Jia & Chunlin Wu & Yan Liu & Surui Xue, 2018. "An Interactive Model among Potential Human Risk Factors: 331 Cases of Coal Mine Roof Accidents in China," IJERPH, MDPI, vol. 15(6), pages 1-20, June.
    4. Sisira S. Withanachchi & Ilia Kunchulia & Giorgi Ghambashidze & Rami Al Sidawi & Teo Urushadze & Angelika Ploeger, 2018. "Farmers’ Perception of Water Quality and Risks in the Mashavera River Basin, Georgia: Analyzing the Vulnerability of the Social-Ecological System through Community Perceptions," Sustainability, MDPI, vol. 10(9), pages 1-26, August.
    5. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    6. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
    7. Aven, Terje & Renn, Ortwin, 2018. "Improving government policy on risk: Eight key principles," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 230-241.
    8. Sven Ove Hansson & Terje Aven, 2014. "Is Risk Analysis Scientific?," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1173-1183, July.
    9. Rodrigo Andrade & Somayeh Moazeni & Jose Emmanuel Ramirez‐Marquez, 2020. "A systems perspective on contact centers and customer service reliability modeling," Systems Engineering, John Wiley & Sons, vol. 23(2), pages 221-236, March.
    10. Phan, Hieu Chi & Dhar, Ashutosh Sutra & Bui, Nang Duc, 2023. "Reliability assessment of pipelines crossing strike-slip faults considering modeling uncertainties using ANN models," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    11. Rocchetta, Roberto & Crespo, Luis G., 2021. "A scenario optimization approach to reliability-based and risk-based design: Soft-constrained modulation of failure probability bounds," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Yang, Ya Ling, 2020. "Comparison of public perception and risk management decisions of aircraft noise near Taoyuan and Kaohsiung International Airports," Journal of Air Transport Management, Elsevier, vol. 85(C).
    13. Niu, Gang & Yang, Bo-Suk & Pecht, Michael, 2010. "Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 786-796.
    14. Teng, Kuei-Yung & Thekdi, Shital A. & Lambert, James H., 2012. "Identification and evaluation of priorities in the business process of a risk or safety organization," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 74-86.
    15. Forslund, Johanna & Samakovlis, Eva & Vredin Johansson, Maria & Barregård, Lars, 2009. "Does remediation save lives? On the cost of cleaning up arsenic-contaminated sites in Sweden," Working Papers 108, National Institute of Economic Research.
    16. Bjerga, Torbjørn & Aven, Terje, 2015. "Adaptive risk management using new risk perspectives – an example from the oil and gas industry," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 75-82.
    17. Aven, Terje, 2013. "A conceptual framework for linking risk and the elements of the data–information–knowledge–wisdom (DIKW) hierarchy," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 30-36.
    18. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    19. García Nieto, P.J. & García-Gonzalo, E. & Sánchez Lasheras, F. & de Cos Juez, F.J., 2015. "Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 219-231.
    20. Leena Suopajärvi & Karin Beland Lindahl & Toni Eerola & Gregory Poelzer, 2023. "Social aspects of business risk in the mineral industry—political, reputational, and local acceptability risks facing mineral exploration and mining," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(2), pages 321-331, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:146:y:2016:i:c:p:33-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.