IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v60y2012icp78-88.html
   My bibliography  Save this article

Production planning for vehicle recycling factories in the EU legislative and global business environments

Author

Listed:
  • Simic, Vladimir
  • Dimitrijevic, Branka

Abstract

End-of-life vehicles (ELVs) are a priority in the EU waste flow, and data show that as many as 6.34 million vehicles were processed in 2008. This paper focuses on the production process in a vehicle recycling factory. It presents a tactical production planning problem for vehicle recycling factories in the EU legislative and global business environments. The problem is formulated as a linear program, which provides optimal storage, processing and recovery, recycling and landfill disposal route decisions. The proposed model can not only help vehicle recycling factories improve their eco-efficiency and profitability but also answer many important questions. The present paper deals with questions regarding which costs should be set in EU member states for landfill disposal, combustion in municipal solid waste incinerators and processing in advanced thermal treatment plants so that the ELV Directive can have the most positive eco-effect on the vehicle recycling factory business. The cost increase for landfill disposal will not always reduce the quantity of disposed automobile shredder residue (ASR). The influence of the ELV Directive on the vehicle recycling factory business is analysed. Future quotas will not endanger their profitability. Comprehensive testing of the proposed model showed that the control of the recycling system efficiency should be done at the system level because it will in no way jeopardise the ELV Directive objectives.

Suggested Citation

  • Simic, Vladimir & Dimitrijevic, Branka, 2012. "Production planning for vehicle recycling factories in the EU legislative and global business environments," Resources, Conservation & Recycling, Elsevier, vol. 60(C), pages 78-88.
  • Handle: RePEc:eee:recore:v:60:y:2012:i:c:p:78-88
    DOI: 10.1016/j.resconrec.2011.11.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S092134491100245X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2011.11.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jane E. Boon & Jacqueline A. Isaacs & Surendra M. Gupta, 2003. "End‐of‐Life Infrastructure Economics for “Clean Vehicles” in the United States," Journal of Industrial Ecology, Yale University, vol. 7(1), pages 25-45, January.
    2. Forton, O.T. & Harder, M.K. & Moles, N.R., 2006. "Value from shredder waste: Ongoing limitations in the UK," Resources, Conservation & Recycling, Elsevier, vol. 46(1), pages 104-113.
    3. Boughton, Bob, 2007. "Evaluation of shredder residue as cement manufacturing feedstock," Resources, Conservation & Recycling, Elsevier, vol. 51(3), pages 621-642.
    4. Qu, Xiuli & Williams, Julie Ann Stuart, 2008. "An analytical model for reverse automotive production planning and pricing," European Journal of Operational Research, Elsevier, vol. 190(3), pages 756-767, November.
    5. Jacqueline A. Isaacs & Surendra M. Gupta, 1997. "Economic Consequences of Increasing Polymer Content for the U.S. Automobile Recycling Infrastructure," Journal of Industrial Ecology, Yale University, vol. 1(4), pages 19-33, October.
    6. Santini, Alessandro & Herrmann, Christoph & Passarini, Fabrizio & Vassura, Ivano & Luger, Tobias & Morselli, Luciano, 2010. "Assessment of Ecodesign potential in reaching new recycling targets," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1128-1134.
    7. Williams, J.A.S. & Wongweragiat, S. & Qu, X. & McGlinch, J.B. & Bonawi-tan, W. & Choi, J.K. & Schiff, J., 2007. "An automotive bulk recycling planning model," European Journal of Operational Research, Elsevier, vol. 177(2), pages 969-981, March.
    8. N. Sakkas & T. Manios, 2003. "End of life vehicle management in areas of low technology sophistication. A case study in Greece," Business Strategy and the Environment, Wiley Blackwell, vol. 12(5), pages 313-325, September.
    9. Gaustad, Gabrielle & Olivetti, Elsa & Kirchain, Randolph, 2012. "Improving aluminum recycling: A survey of sorting and impurity removal technologies," Resources, Conservation & Recycling, Elsevier, vol. 58(C), pages 79-87.
    10. Vidovic, Milorad & Dimitrijevic, Branka & Ratkovic, Branislava & Simic, Vladimir, 2011. "A novel covering approach to positioning ELV collection points," Resources, Conservation & Recycling, Elsevier, vol. 57(C), pages 1-9.
    11. Nathalie Bostel & Pierre Dejax & Zhiqiang Lu, 2005. "The Design, Planning, and Optimization of Reverse Logistics Networks," Springer Books, in: André Langevin & Diane Riopel (ed.), Logistics Systems: Design and Optimization, chapter 0, pages 171-212, Springer.
    12. Andrén, Daniela & Thomas, Andrén, 2009. "Starting Sick Leave on Part-Time as a Treatment Method?," Working Papers 2009:10, Örebro University, School of Business.
    13. Boughton, Bob & Horvath, Arpad, 2006. "Environmental assessment of shredder residue management," Resources, Conservation & Recycling, Elsevier, vol. 47(1), pages 1-25.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vermeulen, Isabel & Block, Chantal & Van Caneghem, Jo & Dewulf, Wim & Sikdar, Subhas K. & Vandecasteele, Carlo, 2012. "Sustainability assessment of industrial waste treatment processes: The case of automotive shredder residue," Resources, Conservation & Recycling, Elsevier, vol. 69(C), pages 17-28.
    2. Simic, Vladimir & Dimitrijevic, Branka, 2013. "Risk explicit interval linear programming model for long-term planning of vehicle recycling in the EU legislative context under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 197-210.
    3. Pegoretti, Thaís dos Santos & Mathieux, Fabrice & Evrard, Damien & Brissaud, Daniel & Arruda, José Roberto de França, 2014. "Use of recycled natural fibres in industrial products: A comparative LCA case study on acoustic components in the Brazilian automotive sector," Resources, Conservation & Recycling, Elsevier, vol. 84(C), pages 1-14.
    4. Huaixi Song & Quanxi Li & Kailing Liu & Yi Li, 2022. "The Recycling Strategy of Closed-Loop Supply Chain Considering CSR under the Government’s Reward–Penalty Policy," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    5. Nakatani, Jun & Konno, Kiyoto & Moriguchi, Yuichi, 2017. "Variability-based optimal design for robust plastic recycling systems," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 53-60.
    6. Dinler, Esra & Güngör, Zülal, 2017. "Planning decisions for recycling products containing hazardous and explosive substances: A fuzzy multi-objective model," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 93-101.
    7. Simic, Vladimir, 2015. "A two-stage interval-stochastic programming model for planning end-of-life vehicles allocation under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 98(C), pages 19-29.
    8. Simic, Vladimir, 2016. "End-of-life vehicles allocation management under multiple uncertainties: An interval-parameter two-stage stochastic full-infinite programming approach," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 1-17.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simic, Vladimir & Dimitrijevic, Branka, 2013. "Risk explicit interval linear programming model for long-term planning of vehicle recycling in the EU legislative context under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 197-210.
    2. Simic, Vladimir, 2015. "A two-stage interval-stochastic programming model for planning end-of-life vehicles allocation under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 98(C), pages 19-29.
    3. Vermeulen, Isabel & Block, Chantal & Van Caneghem, Jo & Dewulf, Wim & Sikdar, Subhas K. & Vandecasteele, Carlo, 2012. "Sustainability assessment of industrial waste treatment processes: The case of automotive shredder residue," Resources, Conservation & Recycling, Elsevier, vol. 69(C), pages 17-28.
    4. Qu, Xiuli & Williams, Julie Ann Stuart, 2008. "An analytical model for reverse automotive production planning and pricing," European Journal of Operational Research, Elsevier, vol. 190(3), pages 756-767, November.
    5. Berzi, Lorenzo & Delogu, Massimo & Pierini, Marco & Romoli, Filippo, 2016. "Evaluation of the end-of-life performance of a hybrid scooter with the application of recyclability and recoverability assessment methods," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 140-155.
    6. Millet, Dominique & Yvars, Pierre-Alain & Tonnelier, Pierre, 2012. "A method for identifying the worst recycling case: Application on a range of vehicles in the automotive sector," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 1-13.
    7. Mahmoudzadeh, Mahdi & Mansour, Saeed & Karimi, Behrouz, 2013. "To develop a third-party reverse logistics network for end-of-life vehicles in Iran," Resources, Conservation & Recycling, Elsevier, vol. 78(C), pages 1-14.
    8. Boughton, Bob, 2007. "Evaluation of shredder residue as cement manufacturing feedstock," Resources, Conservation & Recycling, Elsevier, vol. 51(3), pages 621-642.
    9. Dinler, Esra & Güngör, Zülal, 2017. "Planning decisions for recycling products containing hazardous and explosive substances: A fuzzy multi-objective model," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 93-101.
    10. Hatayama, Hiroki & Daigo, Ichiro & Matsuno, Yasunari & Adachi, Yoshihiro, 2012. "Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 8-14.
    11. Shenle Pan & Chao Chen & Ray Y. Zhong, 2015. "A crowdsourcing solution to collect e-commerce reverse flows in metropolitan areas," Post-Print hal-01148227, HAL.
    12. Suzanne, Elodie & Absi, Nabil & Borodin, Valeria, 2020. "Towards circular economy in production planning: Challenges and opportunities," European Journal of Operational Research, Elsevier, vol. 287(1), pages 168-190.
    13. Letmathe, Peter & Wagner, Sandra, 2018. "“Messy” marginal costs: Internal pricing of environmental aspects on the firm level," International Journal of Production Economics, Elsevier, vol. 201(C), pages 41-52.
    14. Stotz, Philippe Maurice & Niero, Monia & Bey, Niki & Paraskevas, Dimos, 2017. "Environmental screening of novel technologies to increase material circularity: A case study on aluminium cans," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 96-106.
    15. Julien Pedneault & Guillaume Majeau‐Bettez & Stefan Pauliuk & Manuele Margni, 2022. "Sector‐specific scenarios for future stocks and flows of aluminum: An analysis based on shared socioeconomic pathways," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1728-1746, October.
    16. Ciacci, Luca & Chen, Weiqiang & Passarini, Fabrizio & Eckelman, Matthew & Vassura, Ivano & Morselli, Luciano, 2013. "Historical evolution of anthropogenic aluminum stocks and flows in Italy," Resources, Conservation & Recycling, Elsevier, vol. 72(C), pages 1-8.
    17. Wan, Bingbing & Chen, Weiping & Lu, Tiwen & Liu, Fangfang & Jiang, Zhenfei & Mao, Mengdi, 2017. "Review of solid state recycling of aluminum chips," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 37-47.
    18. Alumura, Sibel A. & Karab, Bahar Y. & Melo, M. Teresa, 2013. "Location and logistics," Technical Reports on Logistics of the Saarland Business School 5, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    19. Vidovic, Milorad & Dimitrijevic, Branka & Ratkovic, Branislava & Simic, Vladimir, 2011. "A novel covering approach to positioning ELV collection points," Resources, Conservation & Recycling, Elsevier, vol. 57(C), pages 1-9.
    20. Reddy, Mallampati Srinivasa & Kurose, Keisuke & Okuda, Tetsuji & Nishijima, Wataru & Okada, Mitsumasa, 2008. "Selective recovery of PVC-free polymers from ASR polymers by ozonation and froth flotation," Resources, Conservation & Recycling, Elsevier, vol. 52(6), pages 941-946.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:60:y:2012:i:c:p:78-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.