IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v53y2009i6p301-308.html
   My bibliography  Save this article

Metal resource potential of residues from municipal solid waste (MSW) melting plants

Author

Listed:
  • Jung, Chang-Hwan
  • Osako, Masahiro

Abstract

Fly ash and molten metal residues from municipal solid waste (MSW) melting plants are attracting considerable attention in Japan as an urban mine due to their high metal content. The study aimed at identifying the content of valuable metals in fly ash and molten metal and quantitatively evaluating the metal resource potential through comparison with ore and annual consumption. It was found that not only Zn and Pb but also rare metals such as Ag, Bi, Ga, Ge, Pd, In, Sb, Sn, Te, and Tl were highly concentrated in fly ash, and that the content was mainly influenced by the feedstock supplied to the melting plant. Cu content was extremely high in molten metals. The content of Zn, Pb, Cu, Ag, In, and Pd in fly ash was almost equal to or higher than that in crude ore. Particularly, Zn in fly ash was increased to almost the same level of Zn ore concentrate by simple water washing. Also, the estimated amount of Ga, Ge, Pd, Sb, Sn, and Zn in fly ash and molten metal occupied a high proportion of the annual consumption amount in Japan. These facts revealed that fly ash and molten metals from MSW melting plants have high metal resource potential.

Suggested Citation

  • Jung, Chang-Hwan & Osako, Masahiro, 2009. "Metal resource potential of residues from municipal solid waste (MSW) melting plants," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 301-308.
  • Handle: RePEc:eee:recore:v:53:y:2009:i:6:p:301-308
    DOI: 10.1016/j.resconrec.2009.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344909000044
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2009.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guinee, J. B. & van den Bergh, J. C. J. M. & Boelens, J. & Fraanje, P. J. & Huppes, G. & Kandelaars, P. P. A. A. H. & Lexmond, Th. M. & Moolenaar, S. W. & Olsthoorn, A. A. & Udo de Haes, H. A., 1999. "Evaluation of risks of metal flows and accumulation in economy and environment," Ecological Economics, Elsevier, vol. 30(1), pages 47-65, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Binder, Claudia & Bader, Hans-Peter & Scheidegger, Ruth & Baccini, Peter, 2001. "Dynamic models for managing durables using a stratified approach: the case of Tunja, Colombia," Ecological Economics, Elsevier, vol. 38(2), pages 191-207, August.
    2. Ruhrberg, Martin, 2006. "Assessing the recycling efficiency of copper from end-of-life products in Western Europe," Resources, Conservation & Recycling, Elsevier, vol. 48(2), pages 141-165.
    3. Marcin Sajdak & Artur Majewski & Francesca Di Gruttola & Grzegorz Gałko & Edyta Misztal & Michał Rejdak & Andreas Hornung & Miloud Ouadi, 2023. "Evaluation of the Feasibility of Using TCR-Derived Chars from Selected Biomass Wastes and MSW Fractions in CO 2 Sequestration on Degraded and Post-Industrial Areas," Energies, MDPI, vol. 16(7), pages 1-14, March.
    4. Spatari, S. & Bertram, M. & Gordon, Robert B. & Henderson, K. & Graedel, T.E., 2005. "Twentieth century copper stocks and flows in North America: A dynamic analysis," Ecological Economics, Elsevier, vol. 54(1), pages 37-51, July.
    5. Reijnders, L., 2005. "Disposal, uses and treatments of combustion ashes: a review," Resources, Conservation & Recycling, Elsevier, vol. 43(3), pages 313-336.
    6. Spatari, S. & Bertram, M. & Fuse, K. & Graedel, T. E. & Rechberger, H., 2002. "The contemporary European copper cycle: 1 year stocks and flows," Ecological Economics, Elsevier, vol. 42(1-2), pages 27-42, August.
    7. Ayres, Robert U., 2004. "On the life cycle metaphor: where ecology and economics diverge," Ecological Economics, Elsevier, vol. 48(4), pages 425-438, April.
    8. Douglas, Ian & Lawson, Nigel, 2003. "Airport construction: materials use and geomorphic change," Journal of Air Transport Management, Elsevier, vol. 9(3), pages 177-185.
    9. Huang, Chu-Long & Vause, Jonathan & Ma, Hwong-Wen & Yu, Chang-Ping, 2012. "Using material/substance flow analysis to support sustainable development assessment: A literature review and outlook," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 104-116.
    10. Liu, Yi & Chen, Jining & Mol, Arthur P.J. & Ayres, Robert U., 2007. "Comparative analysis of phosphorus use within national and local economies in China," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 454-474.
    11. Krook, J. & Mårtensson, A. & Eklund, M., 2007. "Evaluating waste management strategies—A case of metal-contaminated waste wood," Resources, Conservation & Recycling, Elsevier, vol. 52(1), pages 103-118.
    12. Chen, Pi-Cheng & Crawford-Brown, Douglas & Chang, Chi-Hui & Ma, Hwong-wen, 2014. "Identifying the drivers of environmental risk through a model integrating substance flow and input–output analysis," Ecological Economics, Elsevier, vol. 107(C), pages 94-103.
    13. Lanzano, T. & Bertram, M. & De Palo, M. & Wagner, C. & Zyla, K. & Graedel, T.E., 2006. "The contemporary European silver cycle," Resources, Conservation & Recycling, Elsevier, vol. 46(1), pages 27-43.
    14. Bouman, Mathijs & Heijungs, Reinout & van der Voet, Ester & van den Bergh, Jeroen C. J. M. & Huppes, Gjalt, 2000. "Material flows and economic models: an analytical comparison of SFA, LCA and partial equilibrium models," Ecological Economics, Elsevier, vol. 32(2), pages 195-216, February.
    15. Wang, Minxi & Chen, Wu & Li, Xin, 2015. "Substance flow analysis of copper in production stage in the U.S. from 1974 to 2012," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 36-48.
    16. Kleijn, Rene & Huele, Ruben & van der Voet, Ester, 2000. "Dynamic substance flow analysis: the delaying mechanism of stocks, with the case of PVC in Sweden," Ecological Economics, Elsevier, vol. 32(2), pages 241-254, February.
    17. van der Voet, Ester & Kleijn, Rene & Huele, Ruben & Ishikawa, Masanobu & Verkuijlen, Evert, 2002. "Predicting future emissions based on characteristics of stocks," Ecological Economics, Elsevier, vol. 41(2), pages 223-234, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:53:y:2009:i:6:p:301-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.