IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v195y2018icp210-226.html
   My bibliography  Save this article

Joint production, quality and maintenance control of a two-machine line subject to operation-dependent and quality-dependent failures

Author

Listed:
  • Bouslah, Bassem
  • Gharbi, Ali
  • Pellerin, Robert

Abstract

In the literature of operations management, the reliability of multistage manufacturing systems has been always modeled with uncorrelated failure processes where the reliability of each machine is assumed to be independent of any failure in the other machines. However, in real-life, machines may be subject to complex correlated failures such as increased degradation and tool wear caused by defective parts produced in preceding machines. Ignoring the correlation effect when modeling the reliability of multistage systems generally results in inaccurate estimation of the overall system reliability and inefficient operations policy accordingly. In this paper, we deal with the problem of integrated production, quality and maintenance control of production lines where machines are subject to quality and reliability operation-dependent degradation. Also, machines' reliability is correlated with the level of incoming product quality. For illustration, we study in this paper a two-machine line model. We propose a combined mathematics and simulation-based modeling framework to jointly optimize the production, quality and maintenance control settings. The objective is to minimize the total cost incurred under a constraint on the outgoing quality. Numerical examples are given to show the effectiveness of the resolution approach and to study important aspects in multistage systems such as the allocation of inspection and maintenance efforts, the Quality-Reliability chain and the interdependence between production, quality and maintenance control settings. The results obtained demonstrate that failure correlation has a significant impact on the optimal control settings and that maintenance and quality control activities in preceding stages can play an important role in the reliability improvement of the subsequent machines.

Suggested Citation

  • Bouslah, Bassem & Gharbi, Ali & Pellerin, Robert, 2018. "Joint production, quality and maintenance control of a two-machine line subject to operation-dependent and quality-dependent failures," International Journal of Production Economics, Elsevier, vol. 195(C), pages 210-226.
  • Handle: RePEc:eee:proeco:v:195:y:2018:i:c:p:210-226
    DOI: 10.1016/j.ijpe.2017.10.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527317303316
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2017.10.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tambe, Pravin P. & Kulkarni, Makarand S., 2022. "A reliability based integrated model of maintenance planning with quality control and production decision for improving operational performance," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Dhahri, Akrem & Gharbi, Ali & Ouhimmou, Mustapha, 2022. "Integrated production-delivery control policy for an unreliable manufacturing system and multiple retailers," International Journal of Production Economics, Elsevier, vol. 245(C).
    3. Wei, Shuaichong & Nourelfath, Mustapha & Nahas, Nabil, 2023. "Analysis of a production line subject to degradation and preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. Azizi, Fariba & Salari, Nooshin, 2023. "A novel condition-based maintenance framework for parallel manufacturing systems based on bivariate birth/birth–death processes," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    5. Małgorzata Jasiulewicz-Kaczmarek & Katarzyna Antosz & Ryszard Wyczółkowski & Dariusz Mazurkiewicz & Bo Sun & Cheng Qian & Yi Ren, 2021. "Application of MICMAC, Fuzzy AHP, and Fuzzy TOPSIS for Evaluation of the Maintenance Factors Affecting Sustainable Manufacturing," Energies, MDPI, vol. 14(5), pages 1-30, March.
    6. Zhou, Jing & Liu, Yu & Liang, Decui & Tang, Maochun, 2023. "A new risk analysis approach to seek best production action during new product introduction," International Journal of Production Economics, Elsevier, vol. 262(C).
    7. Wakiru, James M. & Pintelon, Liliane & Muchiri, Peter N. & Chemweno, Peter K., 2019. "A simulation-based optimization approach evaluating maintenance and spare parts demand interaction effects," International Journal of Production Economics, Elsevier, vol. 208(C), pages 329-342.
    8. Neven Hadžić & Viktor Ložar & Tihomir Opetuk & Robert Keser, 2023. "Transient Response of Homogenous and Nonhomogenous Bernoulli Production Lines," Mathematics, MDPI, vol. 11(24), pages 1-24, December.
    9. Yixiao Zhao & Yihai He & Fengdi Liu & Xiao Han & Anqi Zhang & Di Zhou & Yao Li, 2020. "Operational risk modeling based on operational data fusion for multi-state manufacturing systems," Journal of Risk and Reliability, , vol. 234(2), pages 407-421, April.
    10. Wang, Lin & Lu, Zhiqiang & Ren, Yifei, 2020. "Joint production control and maintenance policy for a serial system with quality deterioration and stochastic demand," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    11. Rajesh Saha & Abdullahil Azeem & Kazi Wahadul Hasan & Syed Mithun Ali & Sanjoy Kumar Paul, 2021. "Integrated economic design of quality control and maintenance management: Implications for managing manufacturing process," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(2), pages 263-280, April.
    12. Ye, Zhenggeng & Cai, Zhiqiang & Yang, Hui & Si, Shubin & Zhou, Fuli, 2023. "Joint optimization of maintenance and quality inspection for manufacturing networks based on deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    13. Leoni, Leonardo & De Carlo, Filippo & Tucci, Mario, 2023. "Developing a framework for generating production-dependent failure rate through discrete-event simulation," International Journal of Production Economics, Elsevier, vol. 266(C).
    14. Gabi Hanukov & Shraga Shoval, 2023. "A Model for a Vacation Queuing Policy Considering Server’s Deterioration and Recovery," Mathematics, MDPI, vol. 11(12), pages 1-21, June.
    15. Havinga, Maik J.A. & de Jonge, Bram, 2020. "Condition-based maintenance in the cyclic patrolling repairman problem," International Journal of Production Economics, Elsevier, vol. 222(C).
    16. Ait-El-Cadi, Abdessamad & Gharbi, Ali & Dhouib, Karem & Artiba, Abdelhakim, 2021. "Integrated production, maintenance and quality control policy for unreliable manufacturing systems under dynamic inspection," International Journal of Production Economics, Elsevier, vol. 236(C).
    17. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    18. Azimpoor, Samareh & Taghipour, Sharareh, 2021. "Joint inspection and product quality optimization for a system with delayed failure," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    19. Rasay, Hasan & Taghipour, Sharareh & Sharifi, Mani, 2022. "An integrated Maintenance and Statistical Process Control Model for a Deteriorating Production Process," Reliability Engineering and System Safety, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:195:y:2018:i:c:p:210-226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.