IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v619y2023ics0378437123002765.html
   My bibliography  Save this article

Modeling heterogeneity in an open percolation backbone fractal traffic network

Author

Listed:
  • Verma, Muskan
  • Sharma, Sapna

Abstract

Urban road networks play a prominent role to facilitate the movement of vehicles. The network is connected by different roads and has a heterogeneous nature. The road networks have different capacities and different transition rates. In a real traffic scenario, the vehicular density is primarily influenced by the capacity of the road. When the capacity of the road is less, the density of vehicles decreases. Also, the transition rate (the number of vehicles entering the road) affects the traffic flow. Thus, to study the heterogeneity of roads in an open network, a percolation-backbone fractal network is considered. The fractal network is described with the help of a cell-transmission graph. The density equations were presented using the speed-matching model with the consideration of capacity and transition rate. The fundamental diagrams were obtained and it is observed how macroscopic fundamental diagram (MFD) varies with different cases of capacity and transition rate. To study traffic dynamics more realistically, an open network is considered. It is found that the traffic flow is affected significantly by the changes in the capacity and transition rate.

Suggested Citation

  • Verma, Muskan & Sharma, Sapna, 2023. "Modeling heterogeneity in an open percolation backbone fractal traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
  • Handle: RePEc:eee:phsmap:v:619:y:2023:i:c:s0378437123002765
    DOI: 10.1016/j.physa.2023.128721
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123002765
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128721?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Rui & Wu, Qing-Song & Zhu, Zuo-Jin, 2002. "A new continuum model for traffic flow and numerical tests," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 405-419, June.
    2. Zeng, Jiao-Yan & Ou, Hui & Tang, Tie-Qiao, 2019. "Feedback strategy with delay in a two-route traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    3. Wang, Tao & Zang, Rudong & Xu, Keyu & Zhang, Jing, 2019. "Analysis of predictive effect on lattice hydrodynamic traffic flow model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    4. Liao, Peng & Tang, Tie-Qiao & Wang, Tao & Zhang, Jian, 2019. "A car-following model accounting for the driving habits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 108-118.
    5. Nagatani, Takashi, 2020. "Traffic flow stabilized by matching speed on network with a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    6. Nagatani, Takashi, 1998. "Modified KdV equation for jamming transition in the continuum models of traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 261(3), pages 599-607.
    7. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    8. Gupta, Arvind Kumar & Redhu, Poonam, 2013. "Analyses of driver’s anticipation effect in sensing relative flux in a new lattice model for two-lane traffic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5622-5632.
    9. Verma, Muskan & Sharma, Sapna, 2022. "Chaotic jam and phase transitions in a lattice model with density dependent passing," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    10. Nagatani, Takashi, 1999. "TDGL and MKdV equations for jamming transition in the lattice models of traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 264(3), pages 581-592.
    11. Gupta, A.K. & Katiyar, V.K., 2006. "Phase transition of traffic states with on-ramp," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 674-682.
    12. Nagatani, Takashi, 2022. "Chain reaction of traffic breakdowns in coupled-cycle networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    13. Zhu Su & Weibing Deng & Longfeng Zhao & Jihui Han & Wei Li & Xu Cai, 2016. "The effects of overtaking strategy in the Nagel-Schreckenberg model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(9), pages 1-8, September.
    14. Verma, Muskan & Sharma, Sapna, 2023. "The role of occupancy and transition rate on traffic flow in a percolation-backbone fractal," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    15. Peng, G.H. & Cai, X.H. & Cao, B.F. & Liu, C.Q., 2012. "A new lattice model of traffic flow with the consideration of the traffic interruption probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 656-663.
    16. Daganzo, Carlos F., 1995. "Requiem for second-order fluid approximations of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 277-286, August.
    17. Arvind Kumar Gupta, 2013. "A Section Approach To A Traffic Flow Model On Networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(05), pages 1-23.
    18. Nagatani, Takashi, 2020. "Traffic flow on percolation-backbone fractal," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    19. Nagatani, Takashi, 2022. "Dynamic transition induced by route choice in two-route traffic network with onramp," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    20. Peng, Guang-han & Cheng, Rong-jun, 2013. "A new car-following model with the consideration of anticipation optimal velocity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3563-3569.
    21. Nagatani, Takashi, 2021. "Traffic flow on star graph: Nonlinear diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verma, Muskan & Sharma, Sapna, 2023. "The role of occupancy and transition rate on traffic flow in a percolation-backbone fractal," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    2. Verma, Muskan & Sharma, Sapna, 2022. "Chaotic jam and phase transitions in a lattice model with density dependent passing," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    3. Nagatani, Takashi, 2020. "Traffic flow on percolation-backbone fractal," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    4. Nagatani, Takashi, 2021. "Traffic flow on star graph: Nonlinear diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    5. Kaur, Daljeet & Sharma, Sapna, 2020. "A new two-lane lattice model by considering predictive effect in traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    6. Tang, Tie-Qiao & Shi, Wei-Fang & Huang, Hai-Jun & Wu, Wen-Xiang & Song, Ziqi, 2019. "A route-based traffic flow model accounting for interruption factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 767-785.
    7. Wang, Jufeng & Sun, Fengxin & Cheng, Rongjun & Ge, Hongxia, 2018. "An extended car-following model considering the self-stabilizing driving behavior of headway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 347-357.
    8. Wang, Zihao & Ge, Hongxia & Cheng, Rongjun, 2018. "Nonlinear analysis for a modified continuum model considering driver’s memory and backward looking effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 18-27.
    9. Kaur, Daljeet & Sharma, Sapna & Gupta, Arvind Kumar, 2022. "Analyses of lattice hydrodynamic area occupancy model for heterogeneous disorder traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    10. Redhu, Poonam & Gupta, Arvind Kumar, 2015. "Jamming transitions and the effect of interruption probability in a lattice traffic flow model with passing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 249-260.
    11. Chen, Dong & Sun, Dihua & Zhao, Min & Zhou, Tong & Cheng, Senlin, 2018. "Modeling and analyses for an extended car-following model accounting for drivers’ situation awareness from cyber physical perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 52-68.
    12. Jiao, Yulei & Ge, Hongxia & Cheng, Rongjun, 2019. "Nonlinear analysis for a modified continuum model considering electronic throttle (ET) and backward looking effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    13. Kaur, Ramanpreet & Sharma, Sapna, 2017. "Analysis of driver’s characteristics on a curved road in a lattice model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 59-67.
    14. Wang, Tao & Li, Guangyao & Zhang, Jing & Li, Shubin & Sun, Tao, 2019. "The effect of Headway Variation Tendency on traffic flow: Modeling and stabilization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 566-575.
    15. Madaan, Nikita & Sharma, Sapna, 2022. "Delayed-feedback control in multi-lane traffic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    16. Cheng, Rongjun & Ge, Hongxia & Sun, Fengxin & Wang, Jufeng, 2018. "An extended macro model accounting for acceleration changes with memory and numerical tests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 270-283.
    17. Yuan, Zijian & Wang, Tao & Zhang, Jing & Li, Shubin, 2022. "Influences of dynamic safe headway on car-following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    18. Liu, Zhaoze & Ge, Hongxia & Cheng, Rongjun, 2018. "KdV–Burgers equation in the modified continuum model considering the effect of friction and radius on a curved road," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1218-1227.
    19. Ou, Hui & Tang, Tie-Qiao & Zhang, Jian & Zhou, Jie-Ming, 2018. "A car-following model accounting for probability distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 105-113.
    20. Wang, Jufeng & Sun, Fengxin & Cheng, Rongjun & Ge, Hongxia, 2018. "An extended heterogeneous car-following model with the consideration of the drivers’ different psychological headways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1113-1125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:619:y:2023:i:c:s0378437123002765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.