IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v615y2023ics0378437123001243.html
   My bibliography  Save this article

Bifurcation in cellular evolution

Author

Listed:
  • Radillo-Ochoa, Diego
  • Rodríguez-Hernández, Andrea
  • Terrero-Escalante, César A.

Abstract

Aspects of cell metabolism are modeled by ordinary differential equations describing the change of intracellular chemical concentrations. There is a correspondence between this dynamical system and a complex network. As in the classic Erdős–Rényi model, the reaction network can evolve by the iterative addition of edges to the underlying graph. In the biochemical context, each added reaction implies a metabolic mutation. In this work it is shown that modifications to the graph topology by gradually adding mutations seems to lead here too to a percolation-like phase transition related to the formation of a giant connected component. It triggers an abrupt change in the functionality of the corresponding network. This percolation is mapped into a bifurcation in the intracellular dynamics. It acts as a shortcut in biological evolution, so that the most probable metabolic state for the cell is suddenly switched from cellular stagnation to exponential growth.

Suggested Citation

  • Radillo-Ochoa, Diego & Rodríguez-Hernández, Andrea & Terrero-Escalante, César A., 2023. "Bifurcation in cellular evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
  • Handle: RePEc:eee:phsmap:v:615:y:2023:i:c:s0378437123001243
    DOI: 10.1016/j.physa.2023.128569
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123001243
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Erratum: Universal resilience patterns in complex networks," Nature, Nature, vol. 536(7615), pages 238-238, August.
    2. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Universal resilience patterns in complex networks," Nature, Nature, vol. 530(7590), pages 307-312, February.
    3. Giuliani, Alessandro & Zbilut, Joseph P. & Conti, Filippo & Manetti, Cesare & Miccheli, Alfredo, 2004. "Invariant features of metabolic networks: a data analysis application on scaling properties of biochemical pathways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 157-170.
    4. Gamermann, D. & Triana-Dopico, J. & Jaime, R., 2019. "A comprehensive statistical study of metabolic and protein–protein interaction network properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    5. Christensen, Claire & Gupta, Anshuman & Maranas, Costas D. & Albert, Réka, 2007. "Large-scale inference and graph-theoretical analysis of gene-regulatory networks in B. Subtilis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 796-810.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Zhenglin & Li, Yan-Fu, 2023. "Holistic Resilience and Reliability Measures for Cellular Telecommunication Networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. Dongli, Duan & Chengxing, Wu & Yuchen, Zhai & Changchun, Lv & Ning, Wang, 2022. "Coexistence mechanism of alien species and local ecosystem based on network dimensionality reduction method," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    3. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    4. Meng, Xiangyi & Zhou, Bin, 2023. "Scale-free networks beyond power-law degree distribution," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    5. Che, Yiming & Zhang, Ziang (John) & Cheng, Changqing, 2023. "Physical–statistical learning in resilience assessment for power generation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    6. Aura Reggiani, 2022. "The Architecture of Connectivity: A Key to Network Vulnerability, Complexity and Resilience," Networks and Spatial Economics, Springer, vol. 22(3), pages 415-437, September.
    7. Dui, Hongyan & Liu, Meng & Song, Jiaying & Wu, Shaomin, 2023. "Importance measure-based resilience management: Review, methodology and perspectives on maintenance," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Schipfer, F. & Mäki, E. & Schmieder, U. & Lange, N. & Schildhauer, T. & Hennig, C. & Thrän, D., 2022. "Status of and expectations for flexible bioenergy to support resource efficiency and to accelerate the energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    10. Roy Cerqueti & Giulia Rotundo, 2023. "The weighted cross-shareholding complex network: a copula approach to concentration and control in financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(2), pages 213-232, April.
    11. Kuhn, Moritz & Luo, Jinfeng & Manovskii, Iourii & Qiu, Xincheng, 2023. "Coordinated firm-level work processes and macroeconomic resilience," Journal of Monetary Economics, Elsevier, vol. 137(C), pages 107-127.
    12. Wang, Xinglong & Peng, Jinhan & Tang, Junqing & Lu, Qiuchen & Li, Xiaowei, 2022. "Investigating the impact of adding new airline routes on air transportation resilience in China," Transport Policy, Elsevier, vol. 125(C), pages 79-95.
    13. Chao, Xiangrui & Ran, Qin & Chen, Jia & Li, Tie & Qian, Qian & Ergu, Daji, 2022. "Regulatory technology (Reg-Tech) in financial stability supervision: Taxonomy, key methods, applications and future directions," International Review of Financial Analysis, Elsevier, vol. 80(C).
    14. Xuehua Han & Liang Wang & Dandan Xu & He Wei & Xinghua Zhang & Xiaodong Zhang, 2022. "Research Progress and Framework Construction of Urban Resilience Computational Simulation," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    15. Liang, Zhenglin & Jiang, Chen & Sun, Muxia & Xue, Zongqi & Li, Yan-Fu, 2023. "Resilience analysis for confronting the spreading risk of contagious diseases," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    16. Tu, Chengyi & Luo, Jianhong & Fan, Ying & Pan, Xuwei, 2023. "Dimensionality reduction in stochastic complex dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    17. Duan, Dongli & Wu, Xixi & Bai, Xue & Yan, Qi & Lv, Changchun & Bian, Genqing, 2022. "Dimensionality reduction method of dynamic networks for evolutionary mechanism of neuronal systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    18. Chen, Aimin & Wang, Pei & Zhou, Tianshou & Tian, Tianhai, 2022. "Balance of positive and negative regulation for trade-off between efficiency and resilience of high-dimensional networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    19. Zhao, Dandan & Li, Runchao & Peng, Hao & Zhong, Ming & Wang, Wei, 2022. "Percolation on simplicial complexes," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    20. He, Chengying & Wen, Zhang & Huang, Ke & Ji, Xiaoqin, 2022. "Sudden shock and stock market network structure characteristics: A comparison of past crisis events," Technological Forecasting and Social Change, Elsevier, vol. 180(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:615:y:2023:i:c:s0378437123001243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.