IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v608y2022ip1s0378437122008081.html
   My bibliography  Save this article

Synchronization of Kuramoto-oscillator networks under event-triggered delayed impulsive control

Author

Listed:
  • Cui, Qian
  • Li, Lulu
  • Cao, Jinde
  • Alsaadi, Fawaz E.

Abstract

The paper mainly studies the synchronization of Kuramoto-oscillator networks (KONs) under event-triggered delayed impulsive control (ETDIC). Instead of pre-setting the impulsive instants, the impulsive sequence is determined by the designed ETDIC strategy. According to the Lyapunov stability theory and proposed ETDIC strategy, the phase and frequency synchronization criteria of KONs with identical and nonidentical natural frequency are proposed, respectively. In addition, the Zeno phenomenon can be avoided under the proposed ETDIC. Finally, two examples are provided to show the validity of the obtained results.

Suggested Citation

  • Cui, Qian & Li, Lulu & Cao, Jinde & Alsaadi, Fawaz E., 2022. "Synchronization of Kuramoto-oscillator networks under event-triggered delayed impulsive control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
  • Handle: RePEc:eee:phsmap:v:608:y:2022:i:p1:s0378437122008081
    DOI: 10.1016/j.physa.2022.128250
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122008081
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128250?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sokolov, Yury & Ermentrout, G. Bard, 2019. "When is sync globally stable in sparse networks of identical Kuramoto oscillators?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    2. Moreira, Carolina A. & de Aguiar, Marcus A.M., 2019. "Global synchronization of partially forced Kuramoto oscillators on networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 487-496.
    3. Ahmadi, Negar & Pei, Yulong & Pechenizkiy, Mykola, 2019. "Effect of linear mixing in EEG on synchronization and complex network measures studied using the Kuramoto model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 289-308.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huafei Chen & Jia Chen & Dan Qu & Kelin Li & Fei Luo, 2022. "An Uncertain Sandwich Impulsive Control System with Impulsive Time Windows," Mathematics, MDPI, vol. 10(24), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dharma Raj Khatiwada, 2022. "Numerical Solution of Finite Kuramoto Model with Time-Dependent Coupling Strength: Addressing Synchronization Events of Nature," Mathematics, MDPI, vol. 10(19), pages 1-10, October.
    2. Alexander Tselykh & Vladislav Vasilev & Larisa Tselykh & Fernando A. F. Ferreira, 2022. "Influence control method on directed weighted signed graphs with deterministic causality," Annals of Operations Research, Springer, vol. 311(2), pages 1281-1305, April.
    3. Liu, Xinmiao & Xia, Jianwei & Huang, Xia & Shen, Hao, 2020. "Generalized synchronization for coupled Markovian neural networks subject to randomly occurring parameter uncertainties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. Guo, Jia-Yi & Cai, Qing & An, Jian-Peng & Chen, Pei-Yin & Ma, Chao & Wan, Jun-He & Gao, Zhong-Ke, 2022. "A Transformer based neural network for emotion recognition and visualizations of crucial EEG channels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    5. Barioni, Ana Elisa D. & de Aguiar, Marcus A.M., 2021. "Complexity reduction in the 3D Kuramoto model," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    6. Peng, Xiaoyi & Zhao, Yi & Small, Michael, 2020. "Identification and prediction of bifurcation tipping points using complex networks based on quasi-isometric mapping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:608:y:2022:i:p1:s0378437122008081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.