IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v550y2020ics0378437120300133.html
   My bibliography  Save this article

Relevant stylized facts about bitcoin: Fluctuations, first return probability, and natural phenomena

Author

Listed:
  • da Cunha, C.R.
  • da Silva, R.

Abstract

Despite the popularity of Bitcoin as a new kind of financial asset, little is know whether it obeys the same stylized facts found in traditional financial instruments. Here we test Bitcoin for a set of these stylized facts. First we study the tails of the distribution of returns for Bitcoin and show that they are fat and exhibit aggregational Gaussianity. We then show that the volatility of Bitcoin tends to cluster in time. Also, the correlation between the volume and volatility is always positive, and the long range variance of returns predict the fine structure better than the other way around. In the second part of this work we show per analogiam that Bitcoin mimics a set of naturally occurring phenomena. For instance, the volatility observed in Bitcoin follows both the Omori and Gutenberg–Richter laws. Finally, we show that the global persistence, originally defined for spin systems, presents a power law behavior with exponent similar to that found in traditional financial markets.

Suggested Citation

  • da Cunha, C.R. & da Silva, R., 2020. "Relevant stylized facts about bitcoin: Fluctuations, first return probability, and natural phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
  • Handle: RePEc:eee:phsmap:v:550:y:2020:i:c:s0378437120300133
    DOI: 10.1016/j.physa.2020.124155
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120300133
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tetsuya Takaishi, 2017. "Statistical properties and multifractality of Bitcoin," Papers 1707.07618, arXiv.org, revised May 2018.
    2. Canan G. Corlu & Alper Corlu, 2015. "Modelling exchange rate returns: which flexible distribution to use?," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1851-1864, November.
    3. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    4. Urquhart, Andrew, 2018. "What causes the attention of Bitcoin?," Economics Letters, Elsevier, vol. 166(C), pages 40-44.
    5. Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
    6. Fry, John, 2018. "Booms, busts and heavy-tails: The story of Bitcoin and cryptocurrency markets?," Economics Letters, Elsevier, vol. 171(C), pages 225-229.
    7. G. R. Jafari & A. Bahraminasab & P. Norouzzadeh, 2007. "Why Does The Standard Garch(1, 1) Model Work Well?," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 18(07), pages 1223-1230.
    8. Mu, Guo-Hua & Zhou, Wei-Xing, 2008. "Relaxation dynamics of aftershocks after large volatility shocks in the SSEC index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5211-5218.
    9. Negrea, Bogdan, 2014. "A statistical measure of financial crises magnitude," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 54-75.
    10. da Silva Filho, Antônio Carlos & Maganini, Natália Diniz & de Almeida, Eduardo Fonseca, 2018. "Multifractal analysis of Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 954-967.
    11. Bariviera, Aurelio F., 2017. "The inefficiency of Bitcoin revisited: A dynamic approach," Economics Letters, Elsevier, vol. 161(C), pages 1-4.
    12. Jan-Christian Gerlach & Guilherme Demos & Didier Sornette, 2018. "Dissection of Bitcoin's Multiscale Bubble History from January 2012 to February 2018," Papers 1804.06261, arXiv.org, revised May 2019.
    13. Joerg Osterrieder & Julian Lorenz, 2017. "A Statistical Risk Assessment Of Bitcoin And Its Extreme Tail Behavior," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 1-19, March.
    14. M. Constantin & S. Das Sarma, 2005. "Volatility, Persistence, and Survival in Financial Markets," Papers physics/0507020, arXiv.org, revised Nov 2005.
    15. Takaishi, Tetsuya, 2018. "Statistical properties and multifractality of Bitcoin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 507-519.
    16. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    17. Chris Brooks & Simon Burke, 2003. "Information criteria for GARCH model selection," The European Journal of Finance, Taylor & Francis Journals, vol. 9(6), pages 557-580.
    18. Stjepan Beguv{s}i'c & Zvonko Kostanjv{c}ar & H. Eugene Stanley & Boris Podobnik, 2018. "Scaling properties of extreme price fluctuations in Bitcoin markets," Papers 1803.08405, arXiv.org.
    19. Alexander M. Petersen & Fengzhong Wang & Shlomo Havlin & H. Eugene Stanley, 2010. "Market dynamics immediately before and after financial shocks: quantifying the Omori, productivity and Bath laws," Papers 1006.1882, arXiv.org, revised Oct 2010.
    20. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    21. Stephen Chan & Jeffrey Chu & Saralees Nadarajah & Joerg Osterrieder, 2017. "A Statistical Analysis of Cryptocurrencies," JRFM, MDPI, vol. 10(2), pages 1-23, May.
    22. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    23. da Silva, Roberto & Bazzan, Ana L.C. & Baraviera, Alexandre T. & Dahmen, Sílvio R., 2006. "Emerging collective behavior and local properties of financial dynamics in a public investment game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 610-626.
    24. Takaishi, Tetsuya & Adachi, Takanori, 2018. "Taylor effect in Bitcoin time series," Economics Letters, Elsevier, vol. 172(C), pages 5-7.
    25. Dastgir, Shabbir & Demir, Ender & Downing, Gareth & Gozgor, Giray & Lau, Chi Keung Marco, 2019. "The causal relationship between Bitcoin attention and Bitcoin returns: Evidence from the Copula-based Granger causality test," Finance Research Letters, Elsevier, vol. 28(C), pages 160-164.
    26. Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
    27. Jeffrey Chu & Saralees Nadarajah & Stephen Chan, 2015. "Statistical Analysis of the Exchange Rate of Bitcoin," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-27, July.
    28. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    29. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: I. Empirical facts," Post-Print hal-00621058, HAL.
    30. Begušić, Stjepan & Kostanjčar, Zvonko & Eugene Stanley, H. & Podobnik, Boris, 2018. "Scaling properties of extreme price fluctuations in Bitcoin markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 400-406.
    31. José Antonio Núñez & Mario I Contreras-Valdez & Carlos A Franco-Ruiz, 2019. "Statistical analysis of bitcoin during explosive behavior periods," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-22, March.
    32. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    33. Chaim, Pedro & Laurini, Márcio P., 2019. "Is Bitcoin a bubble?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 222-232.
    34. da Silva, Roberto & Zembrzuski, Marcelo & Correa, Fabio C. & Lamb, Luis C., 2010. "Stock markets and criticality in the current economic crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5460-5467.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Yitong & Li, Xiao & Shen, Dehua, 2020. "Attention allocation and international stock return comovement: Evidence from the Bitcoin market," Research in International Business and Finance, Elsevier, vol. 54(C).
    2. Paola Stolfi & Mauro Bernardi & Davide Vergni, 2022. "Robust estimation of time-dependent precision matrix with application to the cryptocurrency market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    3. da Cunha, C.R. & Aoki, N. & Ferry, D.K. & Velasquez, A. & Zhang, Y., 2023. "An investigation of the background potential in quantum constrictions using scanning gate microscopy and a swarming algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
    4. Pagnottoni, Paolo & Spelta, Alessandro & Pecora, Nicolò & Flori, Andrea & Pammolli, Fabio, 2021. "Financial earthquakes: SARS-CoV-2 news shock propagation in stock and sovereign bond markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    2. C. R. da Cunha & R. da Silva, 2019. "Relevant Stylized Facts About Bitcoin: Fluctuations, First Return Probability, and Natural Phenomena," Papers 1905.03211, arXiv.org.
    3. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    4. Stefano Martinazzi & Daniele Regoli & Andrea Flori, 2020. "A Tale of Two Layers: The Mutual Relationship between Bitcoin and Lightning Network," Risks, MDPI, vol. 8(4), pages 1-18, December.
    5. López-Martín, Carmen & Arguedas-Sanz, Raquel & Muela, Sonia Benito, 2022. "A cryptocurrency empirical study focused on evaluating their distribution functions," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 387-407.
    6. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    7. Tetsuya Takaishi, 2021. "Time-varying properties of asymmetric volatility and multifractality in Bitcoin," Papers 2102.07425, arXiv.org.
    8. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    9. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    10. Eom, Cheoljun & Kaizoji, Taisei & Kang, Sang Hoon & Pichl, Lukas, 2019. "Bitcoin and investor sentiment: Statistical characteristics and predictability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 511-521.
    11. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    12. T. Takaishi, 2021. "Power-Law Return-Volatility Cross Correlations of Bitcoin," Papers 2102.08187, arXiv.org.
    13. Li, Mu-Yao & Cai, Qing & Gu, Gao-Feng & Zhou, Wei-Xing, 2019. "Exponentially decayed double power-law distribution of Bitcoin trade sizes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    14. F. N. M. de Sousa Filho & J. N. Silva & M. A. Bertella & E. Brigatti, 2020. "The leverage effect and other stylized facts displayed by Bitcoin returns," Papers 2004.05870, arXiv.org, revised Jan 2021.
    15. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    16. Tetsuya Takaishi & Takanori Adachi, 2019. "Market efficiency, liquidity, and multifractality of Bitcoin: A dynamic study," Papers 1902.09253, arXiv.org.
    17. Takaishi, Tetsuya & Adachi, Takanori, 2018. "Taylor effect in Bitcoin time series," Economics Letters, Elsevier, vol. 172(C), pages 5-7.
    18. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2019. "A Peek into the Unobservable: Hidden States and Bayesian Inference for the Bitcoin and Ether Price Series," Papers 1909.10957, arXiv.org, revised Jul 2021.
    19. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    20. Zhang, Yuanyuan & Chan, Stephen & Chu, Jeffrey & Nadarajah, Saralees, 2019. "Stylised facts for high frequency cryptocurrency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 598-612.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:550:y:2020:i:c:s0378437120300133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.