IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v536y2019ics0378437119311409.html
   My bibliography  Save this article

Targeted attack on correlated interdependent networks with dependency groups

Author

Listed:
  • Wang, Jian
  • Fang, Hongying
  • Qin, Xiaolin

Abstract

Many different cyber–physical infrastructure systems can be described as interdependent networks. Attacking important infrastructures deliberately leads to catastrophic influences on the interdependent systems. In this paper, we propose a toy model to describe the targeted attack on interdependent networks with groups. Through a percolation theory analysis, we find that attacking hubs is more likely to destroy the giant cluster. For homogeneous artificial interdependent networks, attacking nodes with any degrees cannot alter the phase transition. However, for heterogeneous correlated interdependent networks, the giant cluster decreases discontinuously (continuously) with the fraction of initial failed nodes when nodes with large (small) degree are more likely to be attacked. The theory can well predict the numerical simulation results.

Suggested Citation

  • Wang, Jian & Fang, Hongying & Qin, Xiaolin, 2019. "Targeted attack on correlated interdependent networks with dependency groups," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
  • Handle: RePEc:eee:phsmap:v:536:y:2019:i:c:s0378437119311409
    DOI: 10.1016/j.physa.2019.121952
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119311409
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.121952?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Wei & Cai, Meng & Zheng, Muhua, 2018. "Social contagions on correlated multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 121-128.
    2. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    3. Jianxi Gao & Xueming Liu & Daqing Li & Shlomo Havlin, 2015. "Recent Progress on the Resilience of Complex Networks," Energies, MDPI, vol. 8(10), pages 1-24, October.
    4. Dong, Gaogao & Tian, Lixin & Du, Ruijin & Fu, Min & Stanley, H. Eugene, 2014. "Analysis of percolation behaviors of clustered networks with partial support–dependence relations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 370-378.
    5. La Rocca, Cristian E. & Stanley, H. Eugene & Braunstein, Lidia A., 2018. "Strategy for stopping failure cascades in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 577-583.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zang, Weifei & Ji, Xinsheng & Liu, Shuxin & Wang, Gengrun, 2021. "Percolation on interdependent networks with cliques and weak interdependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Tianqiao & Zhang, Yang & Zhu, Xuzhen & Chen, Junliang, 2019. "Cascading failures on interdependent networks with star dependent links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    2. Yang, Qihui & Scoglio, Caterina M. & Gruenbacher, Don M., 2021. "Robustness of supply chain networks against underload cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    3. Dong, Shangjia & Wang, Haizhong & Mostafizi, Alireza & Song, Xuan, 2020. "A network-of-networks percolation analysis of cascading failures in spatially co-located road-sewer infrastructure networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    4. Ren, Bo & Li, Huajiao & Shi, Jianglan & Liu, Yanxin & Qi, Yajie, 2022. "Identifying the key sectors and paths of the embodied energy in BRICS nations: A weighted multilayer network approach," Energy, Elsevier, vol. 239(PB).
    5. Liu, Xiaoxiao & Sun, Shiwen & Wang, Jiawei & Xia, Chengyi, 2019. "Onion structure optimizes attack robustness of interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    6. Fang Zhou & Xiang He & Yongbo Yuan & Mingyuan Zhang, 2020. "Influence of Interlink Topology on Multilayer Network Robustness," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
    7. Deng, Lili & Lin, Ying & Wang, Cheng & Xu, Ronghua & Zhou, Gengui, 2020. "Effects of coupling strength and coupling schemes between interdependent lattices on the evolutionary ultimatum game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    8. Li, Zhenpeng & Tang, Xijin, 2019. "Robustness of complex networks to cascading failures induced by Poisson fluctuating loads," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    9. Wang, Wei & Li, Wenyao & Lin, Tao & Wu, Tao & Pan, Liming & Liu, Yanbing, 2022. "Generalized k-core percolation on higher-order dependent networks," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    10. Zou, Yang & Xiong, Zhongyang & Zhang, Pu & Wang, Wei, 2018. "Social contagions on multiplex networks with different reliability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 728-735.
    11. Xiao-Long Ren & Niels Gleinig & Dijana Tolić & Nino Antulov-Fantulin, 2018. "Underestimated Cost of Targeted Attacks on Complex Networks," Complexity, Hindawi, vol. 2018, pages 1-15, January.
    12. Kim, Dong Hwan & Eisenberg, Daniel A. & Chun, Yeong Han & Park, Jeryang, 2017. "Network topology and resilience analysis of South Korean power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 13-24.
    13. Jin, Wei-Xin & Song, Ping & Liu, Guo-Zhu & Stanley, H. Eugene, 2015. "The cascading vulnerability of the directed and weighted network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 302-325.
    14. Jiang, Yuan & Yan, Yuwei & Hong, Cheng & Yang, Songqing & Yu, Rongbin & Dai, Jiyang, 2022. "Multidirectional recovery strategy against failure," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    15. Tu, Haicheng & Xia, Yongxiang & Wu, Jiajing & Zhou, Xiang, 2019. "Robustness assessment of cyber–physical systems with weak interdependency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 9-17.
    16. Zhu, Shu-Shan & Zhu, Xu-Zhen & Wang, Jian-Qun & Zhang, Zeng-Ping & Wang, Wei, 2019. "Social contagions on multiplex networks with heterogeneous population," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 105-113.
    17. Bachmann, Ivana & Valdés, Valeria & Bustos-Jiménez, Javier & Bustos, Benjamin, 2022. "Effect of adding physical links on the robustness of the Internet modeled as a physical–logical interdependent network using simple strategies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    18. Shen, Yi & Ren, Gang & Zhang, Ning & Song, Guohao & Wang, Qin & Ran, Bin, 2020. "Effects of mutual traffic redistribution on robustness of interdependent networks to cascading failures under fluctuant load," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    19. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    20. Tang, Liang & Jing, Ke & He, Jie & Stanley, H. Eugene, 2016. "Robustness of assembly supply chain networks by considering risk propagation and cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 129-139.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:536:y:2019:i:c:s0378437119311409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.