IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v510y2018icp243-260.html
   My bibliography  Save this article

Stochastic asymptotic analysis of a multi-host model with vector transmission

Author

Listed:
  • Acuña-Zegarra, Manuel Adrian
  • Díaz-Infante, Saúl

Abstract

We present a stochastic epidemic model with vectorial transmission and multi-host structure. To include environmental noise, we stochastically perturb biting rates with general state functional intensities. So, we derive a stochastic differential equation (SDE) which describes a vector disease with two types of hosts – humans and animals – and give conditions to assure disease extinction and persistence. Finally, via numerical experiments, we extend and illustrate our results using literature parameters for Chagas.

Suggested Citation

  • Acuña-Zegarra, Manuel Adrian & Díaz-Infante, Saúl, 2018. "Stochastic asymptotic analysis of a multi-host model with vector transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 243-260.
  • Handle: RePEc:eee:phsmap:v:510:y:2018:i:c:p:243-260
    DOI: 10.1016/j.physa.2018.06.105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711830829X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.06.105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Boqiang & Shan, Meijing & Zhang, Qimin & Wang, Weiming, 2017. "A stochastic SIS epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 127-143.
    2. Yongli Cai & Xixi Wang & Weiming Wang & Min Zhao, 2013. "Stochastic Dynamics of an SIRS Epidemic Model with Ratio-Dependent Incidence Rate," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-11, June.
    3. Liu, Yuting & Shan, Meijing & Lian, Xinze & Wang, Weiming, 2016. "Stochastic extinction and persistence of a parasite–host epidemiological model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 586-602.
    4. Liu, Qun & Chen, Qingmei, 2016. "Dynamics of a stochastic SIR epidemic model with saturated incidence," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 155-166.
    5. Wei, Fengying & Liu, Jiamin, 2017. "Long-time behavior of a stochastic epidemic model with varying population size," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 146-153.
    6. Cai, Yongli & Kang, Yun & Wang, Weiming, 2017. "A stochastic SIRS epidemic model with nonlinear incidence rate," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 221-240.
    7. Greenhalgh, D. & Liang, Y. & Mao, X., 2016. "SDE SIS epidemic model with demographic stochasticity and varying population size," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 218-238.
    8. Mao, Xuerong & Marion, Glenn & Renshaw, Eric, 2002. "Environmental Brownian noise suppresses explosions in population dynamics," Stochastic Processes and their Applications, Elsevier, vol. 97(1), pages 95-110, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yan & Jiang, Daqing & Alsaedi, Ahmed & Hayat, Tasawar, 2018. "Modelling a stochastic HIV model with logistic target cell growth and nonlinear immune response function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 276-292.
    2. Liu, Qun & Jiang, Daqing, 2020. "Threshold behavior in a stochastic SIR epidemic model with Logistic birth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    3. Lan, Guijie & Chen, Zhewen & Wei, Chunjin & Zhang, Shuwen, 2018. "Stationary distribution of a stochastic SIQR epidemic model with saturated incidence and degenerate diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 61-77.
    4. Shi, Zhenfeng & Zhang, Xinhong & Jiang, Daqing, 2019. "Dynamics of an avian influenza model with half-saturated incidence," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 399-416.
    5. Qi, Haokun & Zhang, Shengqiang & Meng, Xinzhu & Dong, Huanhe, 2018. "Periodic solution and ergodic stationary distribution of two stochastic SIQS epidemic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 223-241.
    6. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    7. Zhang, Yue & Li, Yang & Zhang, Qingling & Li, Aihua, 2018. "Behavior of a stochastic SIR epidemic model with saturated incidence and vaccination rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 178-187.
    8. Wen, Buyu & Teng, Zhidong & Li, Zhiming, 2018. "The threshold of a periodic stochastic SIVS epidemic model with nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 532-549.
    9. Cao, Boqiang & Shan, Meijing & Zhang, Qimin & Wang, Weiming, 2017. "A stochastic SIS epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 127-143.
    10. Cen Song & Sijia Zhou & Kyle Hunt & Jun Zhuang, 2022. "Comprehensive Evolution Analysis of Public Perceptions Related to Pediatric Care: A Sina Weibo Case Study (2013–2020)," SAGE Open, , vol. 12(1), pages 21582440221, March.
    11. Zhai, Xuanpei & Li, Wenshuang & Wei, Fengying & Mao, Xuerong, 2023. "Dynamics of an HIV/AIDS transmission model with protection awareness and fluctuations," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    12. Wang, Lei & Wang, Kai & Jiang, Daqing & Hayat, Tasawar, 2018. "Nontrivial periodic solution for a stochastic brucellosis model with application to Xinjiang, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 522-537.
    13. Yang, Bo, 2018. "A stochastic Feline immunodeficiency virus model with vertical transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 448-458.
    14. Wei, Fengying & Chen, Lihong, 2020. "Extinction and stationary distribution of an epidemic model with partial vaccination and nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    15. Lv, Xuejin & Meng, Xinzhu & Wang, Xinzeng, 2018. "Extinction and stationary distribution of an impulsive stochastic chemostat model with nonlinear perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 273-279.
    16. Ali, Ishtiaq & Ullah Khan, Sami, 2020. "Analysis of stochastic delayed SIRS model with exponential birth and saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    17. Han, Bingtao & Zhou, Baoquan & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Stationary solution, extinction and density function for a high-dimensional stochastic SEI epidemic model with general distributed delay," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    18. Lan, Guijie & Wei, Chunjin & Zhang, Shuwen, 2019. "Long time behaviors of single-species population models with psychological effect and impulsive toxicant in polluted environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 828-842.
    19. Cai, Yongli & Kang, Yun & Wang, Weiming, 2017. "A stochastic SIRS epidemic model with nonlinear incidence rate," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 221-240.
    20. Zhou, Baoquan & Jiang, Daqing & Han, Bingtao & Hayat, Tasawar, 2022. "Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 15-44.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:510:y:2018:i:c:p:243-260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.