IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v509y2018icp673-689.html
   My bibliography  Save this article

Application of lattice Boltzmann method and spinodal decomposition phenomenon for simulating two-phase thermal flows

Author

Listed:
  • Toghaniyan, Abolfazl
  • Zarringhalam, Majid
  • Akbari, Omid Ali
  • Sheikh Shabani, Gholamreza Ahmadi
  • Toghraie, Davood

Abstract

In present study, by using thermal model of passive scalar and Shan–Chen model two-phase lattice Boltzmann, the two-phase thermal flows were investigated. The dynamics of such flows involves several complexities due to the complex interaction of several physical phenomena such as surface tension, phase transition etc., which should be accounted for in a simulation. A quick review of the literature shows that the lattice Boltzmann method (LBM) was successfully employed to simulate a variety of complex fluid flows such as multiphase flows in porous media. In this paper at first, the thermal model of passive scalar and then, Shan–Chen model in the isothermal state are presented. Then, by using Spinodal decomposition phenomenon in the isothermal and thermal states they were compared with each other. Also, the droplet on the heated wall was studied for different diameters and the location of drop on the heated wall in high Rayleigh numbers (105) and Reynolds numbers (20 to 500) and also, different diameters of drop were investigated. In Spinodal decomposition of phases, the enhancement of drop convergence time and more resistance of smaller drops were observed in thermal model. In general, the results indicate that the existence of temperature in multi-phase problem postpones achieving the steady state and the spurious flows created in the interface region affect the temperature field.

Suggested Citation

  • Toghaniyan, Abolfazl & Zarringhalam, Majid & Akbari, Omid Ali & Sheikh Shabani, Gholamreza Ahmadi & Toghraie, Davood, 2018. "Application of lattice Boltzmann method and spinodal decomposition phenomenon for simulating two-phase thermal flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 673-689.
  • Handle: RePEc:eee:phsmap:v:509:y:2018:i:c:p:673-689
    DOI: 10.1016/j.physa.2018.06.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118307544
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.06.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheikholeslami, Mohsen & Bandpy, Mofid Gorji & Ashorynejad, Hamid Reza, 2015. "Lattice Boltzmann Method for simulation of magnetic field effect on hydrothermal behavior of nanofluid in a cubic cavity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 58-70.
    2. M. Goodarzi & M. R. Safaei & A. Karimipour & K. Hooman & M. Dahari & S. N. Kazi & E. Sadeghinezhad, 2014. "Comparison of the Finite Volume and Lattice Boltzmann Methods for Solving Natural Convection Heat Transfer Problems inside Cavities and Enclosures," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-15, February.
    3. Sheikholeslami, Mohsen & Ganji, Davood Domiri, 2015. "Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann Method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 273-286.
    4. Karimipour, Arash & Hemmat Esfe, Mohammad & Safaei, Mohammad Reza & Toghraie Semiromi, Davood & Jafari, Saeed & Kazi, S.N., 2014. "Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 150-168.
    5. Toghraie, Davood & Karimipour, Arash & Safaei, Mohammad Reza & Goodarzi, Marjan & Alipour, Habibollah & Dahari, Mahidzal, 2016. "Investigation of rib's height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a rib-microchannelAuthor-Name: Akbari, Omid Ali," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 135-153.
    6. Mahmoudi, Ahmed & Mejri, Imen & Omri, Ahmed, 2016. "Study of natural convection cooling of a nanofluid subjected to a magnetic field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 333-348.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oleg Ilyin, 2022. "Low Dissipative Entropic Lattice Boltzmann Method," Mathematics, MDPI, vol. 10(21), pages 1-22, October.
    2. Rasti, Ehsan & Talebi, Farhad & Mazaheri, Kiumars, 2019. "Improvement of drag reduction prediction in viscoelastic pipe flows using proper low-Reynolds k-ε turbulence models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 412-422.
    3. Jeong, Darae & Li, Yibao & Choi, Yongho & Lee, Chaeyoung & Yang, Junxiang & Kim, Junseok, 2021. "A practical adaptive grid method for the Allen–Cahn equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    4. Afrouzi, Hamid Hassanzadeh & Ahmadian, Majid & Moshfegh, Abouzar & Toghraie, Davood & Javadzadegan, Ashkan, 2019. "Statistical analysis of pulsating non-Newtonian flow in a corrugated channel using Lattice-Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    5. Ezzatneshan, Eslam & Vaseghnia, Hamed, 2020. "Evaluation of equations of state in multiphase lattice Boltzmann method with considering surface wettability effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    6. Dolatabadi, Peiman Davari & Khanlari, Karen & Ghafory Ashtiany, Mohsen & Hosseini, Mahmood, 2020. "System identification method by using inverse solution of equations of motion in time domain and noisy condition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    7. Jahangiri, Ali & Mohammadi, Samira & Akbari, Mohammad, 2019. "Modeling the one-dimensional inverse heat transfer problem using a Haar wavelet collocation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 13-26.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hemmat Esfe, Mohammad & Afrand, Masoud, 2020. "Mathematical and artificial brain structure-based modeling of heat conductivity of water based nanofluid enriched by double wall carbon nanotubes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    2. Mahyari, Amirhossein Ansari & Karimipour, Arash & Afrand, Masoud, 2019. "Effects of dispersed added Graphene Oxide-Silicon Carbide nanoparticles to present a statistical formulation for the mixture thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 98-112.
    3. Jourabian, Mahmoud & Darzi, A. Ali Rabienataj & Toghraie, Davood & Akbari, Omid ali, 2018. "Melting process in porous media around two hot cylinders: Numerical study using the lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 316-335.
    4. Safaei, Mohammad Reza & Karimipour, Arash & Abdollahi, Ali & Nguyen, Truong Khang, 2018. "The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 515-535.
    5. Karimipour, Arash & Bagherzadeh, Seyed Amin & Taghipour, Abdolmajid & Abdollahi, Ali & Safaei, Mohammad Reza, 2019. "A novel nonlinear regression model of SVR as a substitute for ANN to predict conductivity of MWCNT-CuO/water hybrid nanofluid based on empirical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 89-97.
    6. Goodarzi, Marjan & D’Orazio, Annunziata & Keshavarzi, Ahmad & Mousavi, Sayedali & Karimipour, Arash, 2018. "Develop the nano scale method of lattice Boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, Two case studies: Pure natural ," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 210-233.
    7. Hajmohammadi, M.R. & Haji Molla Ali Tork, M.H., 2019. "Effects of the magnetic field on the cylindrical Couette flow and heat transfer of a nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 234-245.
    8. Bahrami, Mehrdad & Akbari, Mohammad & Bagherzadeh, Seyed Amin & Karimipour, Arash & Afrand, Masoud & Goodarzi, Marjan, 2019. "Develop 24 dissimilar ANNs by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: Measure MSEs between targets & ANN for Fe–CuO/Eg–Water nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 159-168.
    9. Ahmadi Balootaki, Azam & Karimipour, Arash & Toghraie, Davood, 2018. "Nano scale lattice Boltzmann method to simulate the mixed convection heat transfer of air in a lid-driven cavity with an endothermic obstacle inside," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 681-701.
    10. Shahsavar, Amin & Bagherzadeh, Seyed Amin & Mahmoudi, Boshra & Hajizadeh, Ahmad & Afrand, Masoud & Nguyen, Truong Khang, 2019. "Robust Weighted Least Squares Support Vector Regression algorithm to estimate the nanofluid thermal properties of water/graphene Oxide–Silicon carbide mixture," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1418-1428.
    11. Karimipour, Arash & D’Orazio, Annunziata & Goodarzi, Marjan, 2018. "Develop the lattice Boltzmann method to simulate the slip velocity and temperature domain of buoyancy forces of FMWCNT nanoparticles in water through a micro flow imposed to the specified heat flux," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 729-745.
    12. Bagherzadeh, Seyed Amin & D’Orazio, Annunziata & Karimipour, Arash & Goodarzi, Marjan & Bach, Quang-Vu, 2019. "A novel sensitivity analysis model of EANN for F-MWCNTs–Fe3O4/EG nanofluid thermal conductivity: Outputs predicted analytically instead of numerically to more accuracy and less costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 406-415.
    13. Nafchi, Peyman Mirzakhani & Karimipour, Arash & Afrand, Masoud, 2019. "The evaluation on a new non-Newtonian hybrid mixture composed of TiO2/ZnO/EG to present a statistical approach of power law for its rheological and thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 1-18.
    14. Hajmohammadi, M.R. & Toghraei, I., 2018. "Optimal design and thermal performance improvement of a double-layered microchannel heat sink by introducing Al2O3 nano-particles into the water," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 328-344.
    15. Sheikholeslami, Mohsen & Bandpy, Mofid Gorji & Ashorynejad, Hamid Reza, 2015. "Lattice Boltzmann Method for simulation of magnetic field effect on hydrothermal behavior of nanofluid in a cubic cavity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 58-70.
    16. Li, Chengwu & Zhao, Yuechao & Ai, Dihao & Wang, Qifei & Peng, Zhigao & Li, Yingjun, 2020. "Multi-component LBM-LES model of the air and methane flow in tunnels and its validation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    17. Peng, Yeping & Parsian, Amir & Khodadadi, Hossein & Akbari, Mohammad & Ghani, Kamal & Goodarzi, Marjan & Bach, Quang-Vu, 2020. "Develop optimal network topology of artificial neural network (AONN) to predict the hybrid nanofluids thermal conductivity according to the empirical data of Al2O3 – Cu nanoparticles dispersed in ethy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    18. Alsabery, A.I. & Chamkha, A.J. & Saleh, H. & Hashim, I. & Chanane, B., 2017. "Effects of finite wall thickness and sinusoidal heating on convection in nanofluid-saturated local thermal non-equilibrium porous cavity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 20-38.
    19. Dabiri, Soroush & Khodabandeh, Erfan & Poorfar, Alireza Khoeini & Mashayekhi, Ramin & Toghraie, Davood & Abadian Zade, Seyed Ali, 2018. "Parametric investigation of thermal characteristic in trapezoidal cavity receiver for a linear Fresnel solar collector concentrator," Energy, Elsevier, vol. 153(C), pages 17-26.
    20. Tian, Zhe & Arasteh, Hossein & Parsian, Amir & Karimipour, Arash & Safaei, Mohammad Reza & Nguyen, Truong Khang, 2019. "Estimate the shear rate & apparent viscosity of multi-phased non-Newtonian hybrid nanofluids via new developed Support Vector Machine method coupled with sensitivity analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:509:y:2018:i:c:p:673-689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.