IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v502y2018icp218-227.html
   My bibliography  Save this article

Statistical properties of links of network: A survey on the shipping lines of Worldwide Marine Transport Network

Author

Listed:
  • Zhang, Wenjun
  • Deng, Weibing
  • Li, Wei

Abstract

Node properties and node importance identification of networks have been vastly studied in the last decades. While in this work, we analyze the links’ properties of networks by taking the Worldwide Marine Transport Network (WMTN) as an example, i.e., statistical properties of the shipping lines of WMTN have been investigated in various aspects: Firstly, we study the feature of loops in the shipping lines by defining the line saturability. It is found that the line saturability decays exponentially with the increase of line length. Secondly, to detect the geographical community structure of shipping lines, the Label Propagation Algorithm with compression of Flow (LPAF) and Multi-Dimensional Scaling (MDS) method are employed, which show rather consistent communities. Lastly, to analyze the redundancy property of shipping lines of different marine companies, the multilayer networks are constructed by aggregating the shipping lines of different marine companies. It is observed that the topological quantities, such as average degree, average clustering coefficient, etc., increase smoothly when marine companies are randomly merged (randomly choose two marine companies, then merge the shipping lines of them together), while the relative entropy decreases when the merging sequence is determined by the Jensen–Shannon distance (choose two marine companies when the Jensen–Shannon distance between them is the lowest). This indicates the low redundancy of shipping lines among different marine companies.

Suggested Citation

  • Zhang, Wenjun & Deng, Weibing & Li, Wei, 2018. "Statistical properties of links of network: A survey on the shipping lines of Worldwide Marine Transport Network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 218-227.
  • Handle: RePEc:eee:phsmap:v:502:y:2018:i:c:p:218-227
    DOI: 10.1016/j.physa.2018.02.115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118302097
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.02.115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Puffert, Douglas J., 2002. "Path Dependence in Spatial Networks: The Standardization of Railway Track Gauge," Explorations in Economic History, Elsevier, vol. 39(3), pages 282-314, July.
    2. Elvira Haezendonck & Greet Pison & Peter Rousseeuw & Anja Struyf & Alain Verbeke, 2000. "The Competitive Advantage of Seaports," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 2(2), pages 69-82, June.
    3. César Ducruet & Theo E. Notteboom, 2012. "The worldwide maritime network of container shipping: Spatial structure and regional dynamics," Post-Print halshs-00538051, HAL.
    4. César Ducruet & Theo Notteboom, 2012. "The worldwide maritime network of container shipping : Spatial structure and regional dynamics," Post-Print hal-03246962, HAL.
    5. Jihui Han & Wei Li & Zhu Su & Longfeng Zhao & Weibing Deng, 2016. "Community detection by label propagation with compression of flow," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(12), pages 1-11, December.
    6. Manlio De Domenico & Vincenzo Nicosia & Alexandre Arenas & Vito Latora, 2015. "Structural reducibility of multilayer networks," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Yangyang & Tian, Xiangliang & Li, Zhongwen & Zhou, Wei & Zhou, Zhijie & Zhong, Maohua, 2020. "Comparison analysis on complex topological network models of urban rail transit: A case study of Shenzhen Metro in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    2. César Ducruet, 2020. "The geography of maritime networks: A critical review," Post-Print halshs-02922543, HAL.
    3. Feng, Xiao & He, Shiwei & Li, Guangye & Chi, Jushang, 2021. "Transfer network of high-speed rail and aviation: Structure and critical components," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    4. Sugimura, Yoshihisa & Akakura, Yasuhiro & Yotsushima, Tatsuki & Kawasaki, Tomoya, 2023. "Evaluation of Japanese port policies through network analysis," Transport Policy, Elsevier, vol. 135(C), pages 59-70.
    5. Siyu Huang & Wensha Gou & Hongbo Cai & Xiaomeng Li & Qinghua Chen, 2020. "Effects of Regional Trade Agreement to Local and Global Trade Purity Relationships," Papers 2006.07329, arXiv.org.
    6. Ducruet, César, 2020. "The geography of maritime networks: A critical review," Journal of Transport Geography, Elsevier, vol. 88(C).
    7. Wang, Xinglong & Peng, Jinhan & Tang, Junqing & Lu, Qiuchen & Li, Xiaowei, 2022. "Investigating the impact of adding new airline routes on air transportation resilience in China," Transport Policy, Elsevier, vol. 125(C), pages 79-95.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao He & Yongchun Yang & Meimei Wang & Xudong Zhang, 2022. "Resilience Analysis of Container Port Shipping Network Structure: The Case of China," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    2. Moreira, Paulo Pires, 2012. "A Análise De Sines Como Ativo Geoestratégico Nacional: Um Cluster Suportado Nas Redes Marítimas Mundiais [The Analysis of Sines as a Geostrategic Asset: A Cluster Supported in the Maritime Chain]," MPRA Paper 47694, University Library of Munich, Germany, revised 04 Oct 2012.
    3. Athanasios A. Pallis & Francesco Parola & Michele Acciaro, 2017. "Empirical methods in the study of maritime economics," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(2), pages 189-195, June.
    4. Viljoen, Nadia M. & Joubert, Johan W., 2016. "The vulnerability of the global container shipping network to targeted link disruption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 396-409.
    5. Koi Yu Adolf Ng & César Ducruet, 2014. "The changing tides of port geography (1950–2012)," Post-Print halshs-01359160, HAL.
    6. César Ducruet & Hidekazu Itoh & Justin Berli, 2020. "Urban gravity in the global container shipping network," Post-Print halshs-02588449, HAL.
    7. Xu, Mengqiao & Li, Zhenfu & Shi, Yanlei & Zhang, Xiaoling & Jiang, Shufei, 2015. "Evolution of regional inequality in the global shipping network," Journal of Transport Geography, Elsevier, vol. 44(C), pages 1-12.
    8. Jiang, Ziran & Lei, Liping & Zhang, Jianzhen & Wang, Chengjin & Ye, Shilin, 2023. "Spatio-temporal evolution and location factors of port and shipping service enterprises: A case study of the Yangtze River Delta," Journal of Transport Geography, Elsevier, vol. 106(C).
    9. Ducruet, César & Itoh, Hidekazu, 2022. "The spatial determinants of innovation diffusion: Evidence from global shipping networks," Journal of Transport Geography, Elsevier, vol. 101(C).
    10. JOSÉ I. Castillo-Manzano & Xavier Fageda, 2014. "How are Investments Allocated in a Publicly Owned Port System? Political Factors versus Economic Criteria," Regional Studies, Taylor & Francis Journals, vol. 48(7), pages 1279-1294, July.
    11. Liu, Qing & Yang, Yang & Ke, Luqi & Ng, Adolf K.Y., 2022. "Structures of port connectivity, competition, and shipping networks in Europe," Journal of Transport Geography, Elsevier, vol. 102(C).
    12. Naima Saeed & Kevin Cullinane & Victor Gekara & Prem Chhetri, 2021. "Reconfiguring maritime networks due to the Belt and Road Initiative: impact on bilateral trade flows," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(3), pages 381-400, September.
    13. Jung, Paul H. & Thill, Jean-Claude, 2022. "Sea-land interdependence and delimitation of port hinterland-foreland structures in the international transportation system," Journal of Transport Geography, Elsevier, vol. 99(C).
    14. Pierre Cariou & Patrice Guillotreau, 2022. "Capacity management by global shipping alliances: findings from a game experiment," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(1), pages 41-66, March.
    15. Guerrero, David & Niérat, Patrick & Thill, Jean-Claude & Cohen, Emmanuel, 2022. "Visualizing the maritime connectivity of African countries," Journal of Transport Geography, Elsevier, vol. 101(C).
    16. Marco Fugazza, 2015. "Maritime Connectivity And Trade," UNCTAD Blue Series Papers 70, United Nations Conference on Trade and Development.
    17. David Guerrero & Patrick Nierat & Jean-Claude Thill & Emmanuel Cohen, 2022. "Shifting proximities. Visualizing changes in the maritime connectivity of African countries (2006/2016)," Post-Print hal-03738595, HAL.
    18. Jia, Tao & Liu, Wenxuan & Liu, Xintao, 2021. "A cross-city exploratory analysis of the robustness of bus transit networks using open-source data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    19. Yu, Hongchu & Fang, Zhixiang & Lu, Feng & Murray, Alan T. & Zhang, Hengcai & Peng, Peng & Mei, Qiang & Chen, Jinhai, 2019. "Impact of oil price fluctuations on tanker maritime network structure and traffic flow changes," Applied Energy, Elsevier, vol. 237(C), pages 390-403.
    20. César Ducruet & Hidekazu Itoh, 2022. "The spatial determinants of innovation diffusion: evidence from global shipping networks," EconomiX Working Papers 2022-27, University of Paris Nanterre, EconomiX.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:502:y:2018:i:c:p:218-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.