IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v501y2018icp205-216.html
   My bibliography  Save this article

Routing design and fleet allocation optimization of freeway service patrol: Improved results using genetic algorithm

Author

Listed:
  • Sun, Xiuqiao
  • Wang, Jian

Abstract

Freeway service patrol (FSP), is considered to be an effective method for incident management and can help transportation agency decision-makers alter existing route coverage and fleet allocation. This paper investigates the FSP problem of patrol routing design and fleet allocation, with the objective of minimizing the overall average incident response time. While the simulated annealing (SA) algorithm and its improvements have been applied to solve this problem, they often become trapped in local optimal solution. Moreover, the issue of searching efficiency remains to be further addressed. In this paper, we employ the genetic algorithm (GA) and SA to solve the FSP problem. To maintain population diversity and avoid premature convergence, niche strategy is incorporated into the traditional genetic algorithm. We also employ elitist strategy to speed up the convergence. Numerical experiments have been conducted with the help of the Sioux Falls network. Results show that the GA slightly outperforms the dual-based greedy (DBG) algorithm, the very large-scale neighborhood searching (VLNS) algorithm, the SA algorithm and the scenario algorithm.

Suggested Citation

  • Sun, Xiuqiao & Wang, Jian, 2018. "Routing design and fleet allocation optimization of freeway service patrol: Improved results using genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 205-216.
  • Handle: RePEc:eee:phsmap:v:501:y:2018:i:c:p:205-216
    DOI: 10.1016/j.physa.2018.02.181
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118302735
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.02.181?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ehsan Ardjmand & Gary Weckman & Namkyu Park & Pooya Taherkhani & Manjeet Singh, 2015. "Applying genetic algorithm to a new location and routing model of hazardous materials," International Journal of Production Research, Taylor & Francis Journals, vol. 53(3), pages 916-928, February.
    2. Yafeng Yin, 2008. "A Scenario-based Model for Fleet Allocation of Freeway Service Patrols," Networks and Spatial Economics, Springer, vol. 8(4), pages 407-417, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Jinjun & Yang, Yifan & Qi, Yong, 2018. "A hybrid algorithm for Urban transit schedule optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 745-755.
    2. Timothy C. Matisziw & Mark Ritchey & Robert MacKenzie, 2022. "Change of Scene: The Geographic Dynamics of Resilience to Vehicular Accidents," Networks and Spatial Economics, Springer, vol. 22(3), pages 587-606, September.
    3. Xiuqiao Sun & Jian Wang & Weitiao Wu & Wenjia Liu, 2018. "Genetic Algorithm for Optimizing Routing Design and Fleet Allocation of Freeway Service Overlapping Patrol," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    4. Zhou, Li & Yang, Xin & Wang, Huan & Wu, Jianjun & Chen, Lei & Yin, Haodong & Qu, Yunchao, 2020. "A robust train timetable optimization approach for reducing the number of waiting passengers in metro systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zvi Drezner & George Wesolowsky, 2014. "Covering Part of a Planar Network," Networks and Spatial Economics, Springer, vol. 14(3), pages 629-646, December.
    2. Misagh Rahbari & Alireza Arshadi Khamseh & Yaser Sadati-Keneti & Mohammad Javad Jafari, 2022. "A risk-based green location-inventory-routing problem for hazardous materials: NSGA II, MOSA, and multi-objective black widow optimization," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2804-2840, February.
    3. Wang, Juyoung & Cevik, Mucahit & Amin, Saman Hassanzadeh & Parsaee, Amir Ali, 2021. "Mixed-integer linear programming models for the paint waste management problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    4. Zahra Fattahi & Javad Behnamian, 2022. "Location and transportation of intermodal hazmat considering equipment capacity and congestion impact: elastic method and sub-population genetic algorithm," Annals of Operations Research, Springer, vol. 316(1), pages 303-341, September.
    5. Rabbani, M. & Heidari, R. & Yazdanparast, R., 2019. "A stochastic multi-period industrial hazardous waste location-routing problem: Integrating NSGA-II and Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 272(3), pages 945-961.
    6. Lin Zhou & Xu Wang & Lin Ni & Yun Lin, 2016. "Location-Routing Problem with Simultaneous Home Delivery and Customer’s Pickup for City Distribution of Online Shopping Purchases," Sustainability, MDPI, vol. 8(8), pages 1-20, August.
    7. Stefano Starita & M. Paola Scaparra & Jesse R. O’Hanley, 2017. "A dynamic model for road protection against flooding," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(1), pages 74-88, January.
    8. Zhong, Shaopeng & Cheng, Rong & Jiang, Yu & Wang, Zhong & Larsen, Allan & Nielsen, Otto Anker, 2020. "Risk-averse optimization of disaster relief facility location and vehicle routing under stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    9. Xiuqiao Sun & Jian Wang & Weitiao Wu & Wenjia Liu, 2018. "Genetic Algorithm for Optimizing Routing Design and Fleet Allocation of Freeway Service Overlapping Patrol," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    10. Ng, ManWo & Khattak, Asad & Talley, Wayne K., 2013. "Modeling the time to the next primary and secondary incident: A semi-Markov stochastic process approach," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 44-57.
    11. Moshref-Javadi, Mohammad & Lee, Seokcheon, 2016. "The Latency Location-Routing Problem," European Journal of Operational Research, Elsevier, vol. 255(2), pages 604-619.
    12. Chen, Anthony & Zhou, Zhong, 2010. "The [alpha]-reliable mean-excess traffic equilibrium model with stochastic travel times," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 493-513, May.
    13. Kaan Ozbay & Cem Iyigun & Melike Baykal-Gursoy & Weihua Xiao, 2013. "Probabilistic programming models for traffic incident management operations planning," Annals of Operations Research, Springer, vol. 203(1), pages 389-406, March.
    14. Liu, Jia & Bai, Jinyu & Wu, Desheng, 2021. "Medical supplies scheduling in major public health emergencies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    15. Yan Sun & Xinya Li & Xia Liang & Cevin Zhang, 2019. "A Bi-Objective Fuzzy Credibilistic Chance-Constrained Programming Approach for the Hazardous Materials Road-Rail Multimodal Routing Problem under Uncertainty and Sustainability," Sustainability, MDPI, vol. 11(9), pages 1-27, May.
    16. Agrawal, Saurabh & Singh, Rajesh K. & Murtaza, Qasim, 2015. "A literature review and perspectives in reverse logistics," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 76-92.
    17. Yee Leung & Rongrong Li & Nannan Ji, 2017. "Application of extended Dempster–Shafer theory of evidence in accident probability estimation for dangerous goods transportation," Journal of Geographical Systems, Springer, vol. 19(3), pages 249-271, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:501:y:2018:i:c:p:205-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.