IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v496y2018icp620-634.html
   My bibliography  Save this article

Multi-language naming game

Author

Listed:
  • Zhou, Jianfeng
  • Lou, Yang
  • Chen, Guanrong
  • Tang, Wallace K.S.

Abstract

Naming game is a simulation-based experiment used to study the evolution of languages. The conventional naming game focuses on a single language. In this paper, a novel naming game model named multi-language naming game (MLNG) is proposed, where the agents are different-language speakers who cannot communicate with each other without a translator (interpreter) in between. The MLNG model is general, capable of managing k different languages with k≥ 2. For illustration, the paper only discusses the MLNG with two different languages, and studies five representative network topologies, namely random-graph, WS small-world, NW small-world, scale-free, and random-triangle topologies. Simulation and analysis results both show that: 1) using the network features and based on the proportion of translators the probability of establishing a conversation between two or three agents can be theoretically estimated; 2) the relationship between the convergence speed and the proportion of translators has a power-law-like relation; 3) different agents require different memory sizes, thus a local memory allocation rule is recommended for saving memory resources. The new model and new findings should be useful for further studies of naming games and for better understanding of languages evolution from a dynamical network perspective.

Suggested Citation

  • Zhou, Jianfeng & Lou, Yang & Chen, Guanrong & Tang, Wallace K.S., 2018. "Multi-language naming game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 620-634.
  • Handle: RePEc:eee:phsmap:v:496:y:2018:i:c:p:620-634
    DOI: 10.1016/j.physa.2017.12.124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117313730
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.12.124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lou, Yang & Chen, Guanrong & Hu, Jianwei, 2018. "Communicating with sentences: A multi-word naming game model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 857-868.
    2. M. E. J. Newman & D. J. Watts, 1999. "Renormalization Group Analysis of the Small-World Network Model," Working Papers 99-04-029, Santa Fe Institute.
    3. W. X. Wang & B. Y. Lin & C. L. Tang & G. R. Chen, 2007. "Agreement dynamics of finite-memory language games on networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 60(4), pages 529-536, December.
    4. Fu, Guiyuan & Cai, Yunze & Zhang, Weidong, 2017. "Analysis of naming game over networks in the presence of memory loss," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 350-361.
    5. Lou, Yang & Chen, Guanrong & Fan, Zhengping & Xiang, Luna, 2018. "Local communities obstruct global consensus: Naming game on multi-local-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1741-1752.
    6. Filippo Palombi & Simona Toti, 2017. "Topological Aspects of the Multi-Language Phases of the Naming Game on Community-Based Networks," Games, MDPI, vol. 8(1), pages 1-35, February.
    7. Verma, Gunjan & Swami, Ananthram & Chan, Kevin, 2014. "The impact of competing zealots on opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 310-331.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Zhong-Yan & Lai, Ying-Cheng & Tang, Wallace Kit-Sang, 2020. "Likelihood category game model for knowledge consensus," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Zhong-Yan & Lai, Ying-Cheng & Tang, Wallace Kit-Sang, 2020. "Likelihood category game model for knowledge consensus," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    2. Lou, Yang & Chen, Guanrong & Hu, Jianwei, 2018. "Communicating with sentences: A multi-word naming game model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 857-868.
    3. Marcus Berliant & Axel H. Watanabe, 2018. "A scale‐free transportation network explains the city‐size distribution," Quantitative Economics, Econometric Society, vol. 9(3), pages 1419-1451, November.
    4. An, Sufang & Gao, Xiangyun & An, Haizhong & Liu, Siyao & Sun, Qingru & Jia, Nanfei, 2020. "Dynamic volatility spillovers among bulk mineral commodities: A network method," Resources Policy, Elsevier, vol. 66(C).
    5. Xiangyun Gao & Haizhong An & Weiqiong Zhong, 2013. "Features of the Correlation Structure of Price Indices," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-9, April.
    6. Chung-Yuan Huang & Chuen-Tsai Sun & Hsun-Cheng Lin, 2005. "Influence of Local Information on Social Simulations in Small-World Network Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-8.
    7. Yu, Haitao & Guo, Xinmeng & Wang, Jiang & Deng, Bin & Wei, Xile, 2015. "Vibrational resonance in adaptive small-world neuronal networks with spike-timing-dependent plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 170-179.
    8. Mark Newman, 1999. "Small Worlds: The Structure of Social Networks," Working Papers 99-12-080, Santa Fe Institute.
    9. An, Haizhong & Gao, Xiangyun & Fang, Wei & Ding, Yinghui & Zhong, Weiqiong, 2014. "Research on patterns in the fluctuation of the co-movement between crude oil futures and spot prices: A complex network approach," Applied Energy, Elsevier, vol. 136(C), pages 1067-1075.
    10. Yu, Haitao & Guo, Xinmeng & Wang, Jiang & Deng, Bin & Wei, Xile, 2015. "Spike coherence and synchronization on Newman–Watts small-world neuronal networks modulated by spike-timing-dependent plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 307-317.
    11. Song, Xiao & Shi, Wen & Ma, Yaofei & Yang, Chen, 2015. "Impact of informal networks on opinion dynamics in hierarchically formal organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 916-924.
    12. Gancio, Juan & Rubido, Nicolás, 2022. "Critical parameters of the synchronisation's stability for coupled maps in regular graphs," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    13. Huang, Chung-Yuan & Tsai, Yu-Shiuan, 2010. "Effects of friend-making resources/costs and remembering on acquaintance networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 604-622.
    14. Liu, Hao & Chen, Xin & Huo, Long & Zhang, Yadong & Niu, Chunming, 2022. "Impact of inter-network assortativity on robustness against cascading failures in cyber–physical power systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    15. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
    16. Lu, Zhe-Ming & Guo, Shi-Ze, 2012. "A small-world network derived from the deterministic uniform recursive tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 87-92.
    17. Yuan Hsiao, 2022. "Network diffusion of competing behaviors," Journal of Computational Social Science, Springer, vol. 5(1), pages 47-68, May.
    18. Uzun, Rukiye & Yilmaz, Ergin & Ozer, Mahmut, 2017. "Effects of autapse and ion channel block on the collective firing activity of Newman–Watts small-world neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 386-396.
    19. Kalinowska, Zuzanna & Dybiec, Bartłomiej, 2023. "Weighted Axelrod model: Different but similar," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    20. Cao, Jinde & Guerrini, Luca & Cheng, Zunshui, 2019. "Stability and Hopf bifurcation of controlled complex networks model with two delays," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 21-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:496:y:2018:i:c:p:620-634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.