IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v496y2018icp339-350.html
   My bibliography  Save this article

Mixture models with entropy regularization for community detection in networks

Author

Listed:
  • Chang, Zhenhai
  • Yin, Xianjun
  • Jia, Caiyan
  • Wang, Xiaoyang

Abstract

Community detection is a key exploratory tool in network analysis and has received much attention in recent years. NMM (Newman’s mixture model) is one of the best models for exploring a range of network structures including community structure, bipartite and core–periphery structures, etc. However, NMM needs to know the number of communities in advance. Therefore, in this study, we have proposed an entropy regularized mixture model (called EMM), which is capable of inferring the number of communities and identifying network structure contained in a network, simultaneously. In the model, by minimizing the entropy of mixing coefficients of NMM using EM (expectation–maximization) solution, the small clusters contained little information can be discarded step by step. The empirical study on both synthetic networks and real networks has shown that the proposed model EMM is superior to the state-of-the-art methods.

Suggested Citation

  • Chang, Zhenhai & Yin, Xianjun & Jia, Caiyan & Wang, Xiaoyang, 2018. "Mixture models with entropy regularization for community detection in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 339-350.
  • Handle: RePEc:eee:phsmap:v:496:y:2018:i:c:p:339-350
    DOI: 10.1016/j.physa.2018.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118300025
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajaa Boujemaa-Paterski & Cristian Suarez & Tobias Klar & Jie Zhu & Christophe Guérin & Alex Mogilner & Manuel Théry & Laurent Blanchoin, 2017. "Network heterogeneity regulates steering in actin-based motility," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    2. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Universal resilience patterns in complex networks," Nature, Nature, vol. 530(7590), pages 307-312, February.
    3. M. E. J. Newman & Aaron Clauset, 2016. "Structure and inference in annotated networks," Nature Communications, Nature, vol. 7(1), pages 1-11, September.
    4. Zhang, Shihua & Wang, Rui-Sheng & Zhang, Xiang-Sun, 2007. "Identification of overlapping community structure in complex networks using fuzzy c-means clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 483-490.
    5. Chen, Yi & Wang, Xiaolong & Bu, Junzhao & Tang, Buzhou & Xiang, Xin, 2016. "Network structure exploration in networks with node attributes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 240-253.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maihami, Vafa & Yaghmaee, Farzin, 2018. "Automatic image annotation using community detection in neighbor images," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 123-132.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunpeng Zhao & Qing Pan & Chengan Du, 2019. "Logistic regression augmented community detection for network data with application in identifying autism‐related gene pathways," Biometrics, The International Biometric Society, vol. 75(1), pages 222-234, March.
    2. Jing Wang & Jing Wang & Jingfeng Guo & Liya Wang & Chunying Zhang & Bin Liu, 2023. "Research Progress of Complex Network Modeling Methods Based on Uncertainty Theory," Mathematics, MDPI, vol. 11(5), pages 1-27, March.
    3. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Liang, Zhenglin & Li, Yan-Fu, 2023. "Holistic Resilience and Reliability Measures for Cellular Telecommunication Networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Dongli, Duan & Chengxing, Wu & Yuchen, Zhai & Changchun, Lv & Ning, Wang, 2022. "Coexistence mechanism of alien species and local ecosystem based on network dimensionality reduction method," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    6. Duan, Wenqi & Madasi, Joseph David & Khurshid, Adnan & Ma, Dan, 2022. "Industrial structure conditions economic resilience," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    7. Zhang, Zhiwei & Wang, Zhenyu, 2015. "Mining overlapping and hierarchical communities in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 25-33.
    8. Hou, Gege & Bai, Lei & Si, Shubin, 2023. "Ecosystem resilience and stability analysis against alien species invasion patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    9. Zhou, Bin & Yan, Xiao-Yong & Xu, Xiao-Ke & Xu, Xiao-Ting & Wang, Nianxin, 2018. "Evolutionary of online social networks driven by pareto wealth distribution and bidirectional preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 427-434.
    10. Liu, Siyuan & Zhang, Chunyan & Li, Kun & Zhang, Jianlei, 2022. "Exploring the inducement for social dilemma and cooperation promotion mechanisms in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    11. Vishwas Kukreti & Hirdesh K. Pharasi & Priya Gupta & Sunil Kumar, 2020. "A perspective on correlation-based financial networks and entropy measures," Papers 2004.09448, arXiv.org.
    12. Chen, Lei & Kou, Yingxin & Li, Zhanwu & Xu, An & Wu, Cheng, 2018. "Empirical research on complex networks modeling of combat SoS based on data from real war-game, Part I: Statistical characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 754-773.
    13. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    14. Thorben Funke & Till Becker, 2019. "Stochastic block models: A comparison of variants and inference methods," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-40, April.
    15. Li, Angsheng & Zhang, Xiaohui & Pan, Yicheng, 2017. "Resistance maximization principle for defending networks against virus attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 211-223.
    16. Wu, Jianshe & Wang, Xiaohua & Jiao, Licheng, 2012. "Synchronization on overlapping community network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 508-514.
    17. Badie, Reza & Aleahmad, Abolfazl & Asadpour, Masoud & Rahgozar, Maseud, 2013. "An efficient agent-based algorithm for overlapping community detection using nodes’ closeness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5231-5247.
    18. Gonzales Martinez, Rolando & D’Espallier, Bert & Mersland, Roy, 2021. "Bifurcations in business profitability: An agent-based simulation of homophily in self-financing groups," Journal of Business Research, Elsevier, vol. 129(C), pages 495-514.
    19. Stødle, Kaia & Metcalfe, Caroline A. & Brunner, Logan G. & Saliani, Julian N. & Flage, Roger & Guikema, Seth D., 2021. "Dependent infrastructure system modeling: A case study of the St. Kitts power and water distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    20. Jun Liu & Jiangzhou Wang & Binghui Liu, 2020. "Community Detection of Multi-Layer Attributed Networks via Penalized Alternating Factorization," Mathematics, MDPI, vol. 8(2), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:496:y:2018:i:c:p:339-350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.