IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v482y2017icp524-531.html
   My bibliography  Save this article

Fast asynchronous updating algorithms for k-shell indices

Author

Listed:
  • Lee, Yan-Li
  • Zhou, Tao

Abstract

Identifying influential nodes in networks is a significant and challenging task. Among many centrality indices, the k-shell index performs very well in finding out influential spreaders. However, the traditional method for calculating the k-shell indices of nodes needs the global topological information, which limits its applications in large-scale dynamically growing networks. Recently, Lü et al. [Nature Commun. 7 (2016) 10168] proposed a novel asynchronous algorithm to calculate the k-shell indices, which is suitable to deal with large-scale growing networks. In this paper, we propose two algorithms to select nodes and update their intermediate values towards the k-shell indices, which can help in accelerating the convergence of the calculation of k-shell indices. The former algorithm takes into account the degrees of nodes while the latter algorithm prefers to choose the node whose neighbors’ values have been changed recently. We test these two methods on four real networks and four artificial networks. The results suggest that the two algorithms can respectively reduce the convergence time up to 75.4% and 92.9% in average, compared with the original asynchronous updating algorithm.

Suggested Citation

  • Lee, Yan-Li & Zhou, Tao, 2017. "Fast asynchronous updating algorithms for k-shell indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 524-531.
  • Handle: RePEc:eee:phsmap:v:482:y:2017:i:c:p:524-531
    DOI: 10.1016/j.physa.2017.04.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117304144
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.04.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Jian-Guo & Ren, Zhuo-Ming & Guo, Qiang, 2013. "Ranking the spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4154-4159.
    2. Linyuan Lü & Tao Zhou & Qian-Ming Zhang & H. Eugene Stanley, 2016. "The H-index of a network node and its relation to degree and coreness," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
    3. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    4. Korn, A. & Schubert, A. & Telcs, A., 2009. "Lobby index in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2221-2226.
    5. Cesar A. Hidalgo & Ricardo Hausmann, 2009. "The Building Blocks of Economic Complexity," Papers 0909.3890, arXiv.org.
    6. Andrew G. Haldane & Robert M. May, 2011. "Systemic risk in banking ecosystems," Nature, Nature, vol. 469(7330), pages 351-355, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei, Liguo & Deng, Yong, 2017. "A new method to identify influential nodes based on relative entropy," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 257-267.
    2. Zhai, Li & Yan, Xiangbin & Zhang, Guojing, 2018. "Bi-directional h-index: A new measure of node centrality in weighted and directed networks," Journal of Informetrics, Elsevier, vol. 12(1), pages 299-314.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen Zhou & Jiayi Gu & Yifan Jia, 2018. "h-Index-based link prediction methods in citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 381-390, October.
    2. Fei, Liguo & Zhang, Qi & Deng, Yong, 2018. "Identifying influential nodes in complex networks based on the inverse-square law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1044-1059.
    3. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    4. Yu, Senbin & Gao, Liang & Xu, Lida & Gao, Zi-You, 2019. "Identifying influential spreaders based on indirect spreading in neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 418-425.
    5. Xu, Shuang & Wang, Pei, 2017. "Identifying important nodes by adaptive LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 654-664.
    6. Xu, Shuqi & Mariani, Manuel Sebastian & Lü, Linyuan & Medo, Matúš, 2020. "Unbiased evaluation of ranking metrics reveals consistent performance in science and technology citation data," Journal of Informetrics, Elsevier, vol. 14(1).
    7. Zhong, Lin-Feng & Shang, Ming-Sheng & Chen, Xiao-Long & Cai, Shi-Ming, 2018. "Identifying the influential nodes via eigen-centrality from the differences and similarities of structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 77-82.
    8. Bao, Zhong-Kui & Ma, Chuang & Xiang, Bing-Bing & Zhang, Hai-Feng, 2017. "Identification of influential nodes in complex networks: Method from spreading probability viewpoint," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 391-397.
    9. Ye, Yucheng & Xu, Shuqi & Mariani, Manuel Sebastian & Lü, Linyuan, 2022. "Forecasting countries' gross domestic product from patent data," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    10. Wang, Ruby W. & Wei, Shelia X. & Ye, Fred Y., 2021. "Extracting a core structure from heterogeneous information network using h-subnet and meta-path strength," Journal of Informetrics, Elsevier, vol. 15(3).
    11. Zhong, Lin-Feng & Liu, Quan-Hui & Wang, Wei & Cai, Shi-Min, 2018. "Comprehensive influence of local and global characteristics on identifying the influential nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 78-84.
    12. Tiziano Squartini & Guido Caldarelli & Giulio Cimini & Andrea Gabrielli & Diego Garlaschelli, 2018. "Reconstruction methods for networks: the case of economic and financial systems," Papers 1806.06941, arXiv.org.
    13. Pisicoli, Beniamino, 2023. "Financial development, diversity, and economic stability: Micro and systemic evidence," International Economics, Elsevier, vol. 175(C), pages 187-200.
    14. Ni, Chengzhang & Yang, Jun & Kong, Demei, 2020. "Sequential seeding strategy for social influence diffusion with improved entropy-based centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    15. Vidmer, Alexandre & Zeng, An & Medo, Matúš & Zhang, Yi-Cheng, 2015. "Prediction in complex systems: The case of the international trade network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 188-199.
    16. Domenico Di Gangi & Giacomo Bormetti & Fabrizio Lillo, 2022. "Score Driven Generalized Fitness Model for Sparse and Weighted Temporal Networks," Papers 2202.09854, arXiv.org, revised Mar 2022.
    17. Pawe{l} Smaga & Mateusz Wili'nski & Piotr Ochnicki & Piotr Arendarski & Tomasz Gubiec, 2016. "Can banks default overnight? Modeling endogenous contagion on O/N interbank market," Papers 1603.05142, arXiv.org.
    18. Yao, Yabing & Zhang, Ruisheng & Yang, Fan & Tang, Jianxin & Yuan, Yongna & Hu, Rongjing, 2018. "Link prediction in complex networks based on the interactions among paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 52-67.
    19. Guido Caldarelli & Matthieu Cristelli & Andrea Gabrielli & Luciano Pietronero & Antonio Scala & Andrea Tacchella, 2012. "A Network Analysis of Countries’ Export Flows: Firm Grounds for the Building Blocks of the Economy," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-11, October.
    20. Beniamino Pisicoli, 2022. "Banking diversity, financial complexity and resilience to financial shocks: evidence from Italian provinces," International Review of Applied Economics, Taylor & Francis Journals, vol. 36(3), pages 338-402, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:482:y:2017:i:c:p:524-531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.