IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v460y2016icp105-115.html
   My bibliography  Save this article

A power flow based model for the analysis of vulnerability in power networks

Author

Listed:
  • Wang, Zhuoyang
  • Chen, Guo
  • Hill, David J.
  • Dong, Zhao Yang

Abstract

An innovative model which considers power flow, one of the most important characteristics in a power system, is proposed for the analysis of power grid vulnerability. Moreover, based on the complex network theory and the Max-Flow theorem, a new vulnerability index is presented to identify the vulnerable lines in a power grid. In addition, comparative simulations between the power flow based model and existing models are investigated on the IEEE 118-bus system. The simulation results demonstrate that the proposed model and the index are more effective in power grid vulnerability analysis.

Suggested Citation

  • Wang, Zhuoyang & Chen, Guo & Hill, David J. & Dong, Zhao Yang, 2016. "A power flow based model for the analysis of vulnerability in power networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 105-115.
  • Handle: RePEc:eee:phsmap:v:460:y:2016:i:c:p:105-115
    DOI: 10.1016/j.physa.2016.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116301868
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    2. Crucitti, Paolo & Latora, Vito & Marchiori, Massimo, 2004. "A topological analysis of the Italian electric power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 92-97.
    3. Levitin, Gregory & Xie, Min & Zhang, Tieling, 2007. "Reliability of fault-tolerant systems with parallel task processing," European Journal of Operational Research, Elsevier, vol. 177(1), pages 420-430, February.
    4. Chen, Guo & Dong, Zhao Yang & Hill, David J. & Zhang, Guo Hua, 2009. "An improved model for structural vulnerability analysis of power networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4259-4266.
    5. Dai, YuanYu & Chen, Guo & Dong, ZhaoYang & Xue, YuSheng & Hill, David J. & Zhao, Yuan, 2014. "An improved framework for power grid vulnerability analysis considering critical system features," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 405-415.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2019. "Review of major approaches to analyze vulnerability in power system," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 153-172.
    2. Su, Huai & Zhang, Jinjun & Zio, Enrico & Yang, Nan & Li, Xueyi & Zhang, Zongjie, 2018. "An integrated systemic method for supply reliability assessment of natural gas pipeline networks," Applied Energy, Elsevier, vol. 209(C), pages 489-501.
    3. Wang, Zhuoyang & Hill, David J. & Chen, Guo & Dong, Zhao Yang, 2017. "Power system cascading risk assessment based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 532-543.
    4. Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi, 2018. "A systematic framework of vulnerability analysis of a natural gas pipeline network," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 79-91.
    5. Wang, Zhuoyang & Chen, Guo & Liu, Long & Hill, David J., 2020. "Cascading risk assessment in power-communication interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    6. Wang, WuChang & Zhang, Yi & Li, YuXing & Hu, Qihui & Liu, Chengsong & Liu, Cuiwei, 2022. "Vulnerability analysis method based on risk assessment for gas transmission capabilities of natural gas pipeline networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    7. Chen, Chong & Zhou, Xuan & Li, Zhuo & He, Zhiheng & Li, Zhengtian & Lin, Xiangning, 2018. "Novel complex network model and its application in identifying critical components of power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 316-329.
    8. Xinglong Wang & Shangfei Miao & Junqing Tang, 2020. "Vulnerability and Resilience Analysis of the Air Traffic Control Sector Network in China," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    9. Tianhua Li & Yanchao Du & Yongbo Yuan, 2019. "Use of Variable Fuzzy Clustering to Quantify the Vulnerability of a Power Grid to Earthquake Damage," Sustainability, MDPI, vol. 11(20), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Xiangyu & Zhou, Huijie & Li, Zhiyi, 2021. "On the resilience of modern power systems: A complex network perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Zohre Alipour & Mohammad Ali Saniee Monfared & Enrico Zio, 2014. "Comparing topological and reliability-based vulnerability analysis of Iran power transmission network," Journal of Risk and Reliability, , vol. 228(2), pages 139-151, April.
    3. Mahmoud Saleh & Yusef Esa & Ahmed Mohamed, 2018. "Applications of Complex Network Analysis in Electric Power Systems," Energies, MDPI, vol. 11(6), pages 1-16, May.
    4. Wang, Kai & Zhang, Bu-han & Zhang, Zhe & Yin, Xiang-gen & Wang, Bo, 2011. "An electrical betweenness approach for vulnerability assessment of power grids considering the capacity of generators and load," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4692-4701.
    5. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    6. Wen, Xiangxi & Tu, Congliang & Wu, Minggong, 2018. "Node importance evaluation in aviation network based on “No Return” node deletion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 546-559.
    7. Guo, Hengdao & Zheng, Ciyan & Iu, Herbert Ho-Ching & Fernando, Tyrone, 2017. "A critical review of cascading failure analysis and modeling of power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 9-22.
    8. H Jönsson & J Johansson & H Johansson, 2008. "Identifying critical components in technical infrastructure networks," Journal of Risk and Reliability, , vol. 222(2), pages 235-243, June.
    9. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    10. Nasiruzzaman, A.B.M. & Pota, H.R. & Akter, Most. Nahida, 2014. "Vulnerability of the large-scale future smart electric power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 11-24.
    11. Fan, Wenli & Huang, Shaowei & Mei, Shengwei, 2016. "Invulnerability of power grids based on maximum flow theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 977-985.
    12. Wang, Zhuoyang & Hill, David J. & Chen, Guo & Dong, Zhao Yang, 2017. "Power system cascading risk assessment based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 532-543.
    13. Johan Rose Santos & Nur Diana Safitri & Maya Safira & Varun Varghese & Makoto Chikaraishi, 2021. "Road network vulnerability and city-level characteristics: A nationwide comparative analysis of Japanese cities," Environment and Planning B, , vol. 48(5), pages 1091-1107, June.
    14. Ziqi Wang & Jinghan He & Alexandru Nechifor & Dahai Zhang & Peter Crossley, 2017. "Identification of Critical Transmission Lines in Complex Power Networks," Energies, MDPI, vol. 10(9), pages 1-19, August.
    15. Carlo Bianca, 2022. "On the Modeling of Energy-Multisource Networks by the Thermostatted Kinetic Theory Approach: A Review with Research Perspectives," Energies, MDPI, vol. 15(21), pages 1-22, October.
    16. Tony H. Grubesic & Timothy C. Matisziw & Alan T. Murray & Diane Snediker, 2008. "Comparative Approaches for Assessing Network Vulnerability," International Regional Science Review, , vol. 31(1), pages 88-112, January.
    17. Xue, Fei & Bompard, Ettore & Huang, Tao & Jiang, Lin & Lu, Shaofeng & Zhu, Huaiying, 2017. "Interrelation of structure and operational states in cascading failure of overloading lines in power grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 728-740.
    18. Sean Wilkinson & Sarah Dunn & Shu Ma, 2012. "The vulnerability of the European air traffic network to spatial hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 1027-1036, February.
    19. Pagani, Giuliano Andrea & Aiello, Marco, 2013. "The Power Grid as a complex network: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(11), pages 2688-2700.
    20. Shriram Ashok Kumar & Maliha Tasnim & Zohvin Singh Basnyat & Faezeh Karimi & Kaveh Khalilpour, 2022. "Resilience Analysis of Australian Electricity and Gas Transmission Networks," Sustainability, MDPI, vol. 14(6), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:460:y:2016:i:c:p:105-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.