IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v457y2016icp239-254.html
   My bibliography  Save this article

Effect of exit locations on ants escaping a two-exit room stressed with repellent

Author

Listed:
  • Wang, Shujie
  • Cao, Shuchao
  • Wang, Qiao
  • Lian, Liping
  • Song, Weiguo

Abstract

In order to investigate the effect of the distance between two exits on ant evacuation efficiency and the behavior of ants escaping from a two-exit room, we conducted ant egress experiments using Camponotus japonicus in multiple situations. We found that the ants demonstrated the phenomenon of “symmetry breaking” in this stress situation. It was also shown that different locations for the exits obviously affected the ants’ egress efficiency by measuring the time intervals between individual egress and flow rate in eight repeated experiments, each of which contained five different distance between the two exits. In addition, it is demonstrated that there are differences between the predictions of Social Force Model of pedestrians and the behaviors of ants in stress conditions through comparing some important behavioral features, including position, trajectory, velocity, and density map.

Suggested Citation

  • Wang, Shujie & Cao, Shuchao & Wang, Qiao & Lian, Liping & Song, Weiguo, 2016. "Effect of exit locations on ants escaping a two-exit room stressed with repellent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 239-254.
  • Handle: RePEc:eee:phsmap:v:457:y:2016:i:c:p:239-254
    DOI: 10.1016/j.physa.2016.03.083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116300814
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.03.083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parisi, D.R. & Dorso, C.O., 2007. "Morphological and dynamical aspects of the room evacuation process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(1), pages 343-355.
    2. Huan-Huan, Tian & Li-Yun, Dong & Yu, Xue, 2015. "Influence of the exits’ configuration on evacuation process in a room without obstacle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 164-178.
    3. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    4. Audrey Dussutour & Vincent Fourcassié & Dirk Helbing & Jean-Louis Deneubourg, 2004. "Optimal traffic organization in ants under crowded conditions," Nature, Nature, vol. 428(6978), pages 70-73, March.
    5. Perez, Gay Jane & Tapang, Giovanni & Lim, May & Saloma, Caesar, 2002. "Streaming, disruptive interference and power-law behavior in the exit dynamics of confined pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(3), pages 609-618.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Qiujia & Lu, Linjun & Zhang, Yijing & Hu, Miaoqing, 2022. "Modeling the dynamics of pedestrian evacuation in a complex environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    2. Zhang, Teng & Zhang, Xuelin & Huang, Shenshi & Li, Changhai & Lu, Shouxiang, 2018. "Collective behavior of mice passing through an exit under panic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 233-242.
    3. Yuan-Kai Chung & Chung-Chi Lin, 2017. "Heat-induced symmetry breaking in ant (Hymenoptera: Formicidae) escape behavior," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-12, March.
    4. Haghani, Milad & Sarvi, Majid, 2018. "Crowd behaviour and motion: Empirical methods," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 253-294.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sticco, I.M. & Frank, G.A. & Cerrotta, S. & Dorso, C.O., 2017. "Room evacuation through two contiguous exits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 172-185.
    2. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    3. Guo, Xiwei & Chen, Jianqiao & Zheng, Yaochen & Wei, Junhong, 2012. "A heterogeneous lattice gas model for simulating pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 582-592.
    4. Shiwakoti, Nirajan & Sarvi, Majid, 2013. "Understanding pedestrian crowd panic: a review on model organisms approach," Journal of Transport Geography, Elsevier, vol. 26(C), pages 12-17.
    5. Guo, Ren-Yong, 2014. "Simulation of spatial and temporal separation of pedestrian counter flow through a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 428-439.
    6. Gao, Jin & He, Jun & Gong, Jinghai, 2020. "A simplified method to provide evacuation guidance in a multi-exit building under emergency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    7. Yamamoto, Kazuhiro & Kokubo, Satoshi & Nishinari, Katsuhiro, 2007. "Simulation for pedestrian dynamics by real-coded cellular automata (RCA)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 654-660.
    8. Li, Wenhang & Gong, Jianhua & Yu, Ping & Shen, Shen, 2016. "Modeling, simulation and analysis of group trampling risks during escalator transfers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 970-984.
    9. Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.
    10. Yuan-Kai Chung & Chung-Chi Lin, 2017. "Heat-induced symmetry breaking in ant (Hymenoptera: Formicidae) escape behavior," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-12, March.
    11. Fu, Zhijian & Zhou, Xiaodong & Zhu, Kongjin & Chen, Yanqiu & Zhuang, Yifan & Hu, Yuqi & Yang, Lizhong & Chen, Changkun & Li, Jian, 2015. "A floor field cellular automaton for crowd evacuation considering different walking abilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 294-303.
    12. Frank, G.A. & Dorso, C.O., 2011. "Room evacuation in the presence of an obstacle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2135-2145.
    13. Li, Wenhang & Gong, Jianhua & Yu, Ping & Shen, Shen & Li, Rong & Duan, Qishen, 2015. "Simulation and analysis of congestion risk during escalator transfers using a modified social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 28-40.
    14. Khamis, Nurulaqilla & Selamat, Hazlina & Ismail, Fatimah Sham & Lutfy, Omar Farouq & Haniff, Mohamad Fadzli & Nordin, Ili Najaa Aimi Mohd, 2020. "Optimized exit door locations for a safer emergency evacuation using crowd evacuation model and artificial bee colony optimization," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    15. Li, Wenhang & Gong, Jianhua & Yu, Ping & Shen, Shen & Li, Rong & Duan, Qishen, 2014. "Simulation and analysis of individual trampling risk during escalator transfers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 119-133.
    16. Xiao, Hanyi & Wang, Qiao & Zhang, Jun & Song, Weiguo, 2019. "Experimental study on the single-file movement of mice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 676-686.
    17. Rozan, E.A. & Frank, G.A. & Cornes, F.E. & Sticco, I.M. & Dorso, C.O., 2022. "Microscopic dynamics of escaping groups through an exit and a corridor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    18. Shi, Xiaomeng & Ye, Zhirui & Shiwakoti, Nirajan & Tang, Dounan & Lin, Junkai, 2019. "Examining effect of architectural adjustment on pedestrian crowd flow at bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 350-364.
    19. Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.
    20. Wang, Tao & Huang, Keke & Cheng, Yuan & Zheng, Xiaoping, 2015. "Understanding herding based on a co-evolutionary model for strategy and game structure," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 84-90.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:457:y:2016:i:c:p:239-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.