IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v449y2016icp426-436.html
   My bibliography  Save this article

Characteristics of successful opinion leaders in a bounded confidence model

Author

Listed:
  • Chen, Shuwei
  • Glass, David H.
  • McCartney, Mark

Abstract

This paper analyses the impact of competing opinion leaders on attracting followers in a social group based on a bounded confidence model in terms of four characteristics: reputation, stubbornness, appeal and extremeness. In the model, reputation differs among leaders and normal agents based on the weights assigned to them, stubbornness of leaders is reflected by their confidence towards normal agents, appeal of the leaders is represented by the confidence of followers towards them, and extremeness is captured by the opinion values of leaders. Simulations show that increasing reputation, stubbornness or extremeness makes it more difficult for the group to achieve consensus, but increasing the appeal will make it easier. The results demonstrate that successful opinion leaders should generally be less stubborn, have greater appeal and be less extreme in order to attract more followers in a competing environment. Furthermore, the number of followers can be very sensitive to small changes in these characteristics. On the other hand, reputation has a more complicated impact: higher reputation helps the leader to attract more followers when the group bound of confidence is high, but can hinder the leader from attracting followers when the group bound of confidence is low.

Suggested Citation

  • Chen, Shuwei & Glass, David H. & McCartney, Mark, 2016. "Characteristics of successful opinion leaders in a bounded confidence model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 426-436.
  • Handle: RePEc:eee:phsmap:v:449:y:2016:i:c:p:426-436
    DOI: 10.1016/j.physa.2015.12.107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115011449
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.12.107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    2. Daron Acemoglu & Asuman Ozdaglar, 2011. "Opinion Dynamics and Learning in Social Networks," Dynamic Games and Applications, Springer, vol. 1(1), pages 3-49, March.
    3. Wang, Huanjing & Shang, Lihui, 2015. "Opinion dynamics in networks with common-neighbors-based connections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 180-186.
    4. Pineda, M. & Buendía, G.M., 2015. "Mass media and heterogeneous bounds of confidence in continuous opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 73-84.
    5. Fu, Guiyuan & Zhang, Weidong & Li, Zhijun, 2015. "Opinion dynamics of modified Hegselmann–Krause model in a group-based population with heterogeneous bounded confidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 558-565.
    6. A. Pluchino & V. Latora & A. Rapisarda, 2006. "Compromise and synchronization in opinion dynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 50(1), pages 169-176, March.
    7. Jan Lorenz, 2007. "Continuous Opinion Dynamics Under Bounded Confidence: A Survey," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 18(12), pages 1819-1838.
    8. Weisbuch, Gérard & Deffuant, Guillaume & Amblard, Frédéric, 2005. "Persuasion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 555-575.
    9. Duncan J. Watts & Peter Sheridan Dodds, 2007. "Influentials, Networks, and Public Opinion Formation," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 34(4), pages 441-458, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bashari, Masoud & Akbarzadeh-T, Mohammad-R., 2020. "Controlling opinions in Deffuant model by reconfiguring the network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    2. Xi Chen & Shen Zhao & Wei Li, 2019. "Opinion Dynamics Model Based on Cognitive Styles: Field-Dependence and Field-Independence," Complexity, Hindawi, vol. 2019, pages 1-12, February.
    3. Glass, Catherine A. & Glass, David H., 2021. "Opinion dynamics of social learning with a conflicting source," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    4. Xi Chen & Xiao Zhang & Yong Xie & Wei Li, 2017. "Opinion Dynamics of Social-Similarity-Based Hegselmann–Krause Model," Complexity, Hindawi, vol. 2017, pages 1-12, December.
    5. Catherine A. Glass & David H. Glass, 2021. "Social Influence of Competing Groups and Leaders in Opinion Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 799-823, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takesue, Hirofumi, 2023. "Relative opinion similarity leads to the emergence of large clusters in opinion formation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    2. Huang, Changwei & Dai, Qionglin & Han, Wenchen & Feng, Yuee & Cheng, Hongyan & Li, Haihong, 2018. "Effects of heterogeneous convergence rate on consensus in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 428-435.
    3. Han, Wenchen & Feng, Yuee & Qian, Xiaolan & Yang, Qihui & Huang, Changwei, 2020. "Clusters and the entropy in opinion dynamics on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    4. Glass, Catherine A. & Glass, David H., 2021. "Opinion dynamics of social learning with a conflicting source," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    5. Alvarez, Emiliano & Brida, Juan Gabriel, 2019. "What about the others? Consensus and equilibria in the presence of self-interest and conformity in social groups," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 285-298.
    6. Antonio Parravano & Ascensión Andina-Díaz & Miguel A Meléndez-Jiménez, 2016. "Bounded Confidence under Preferential Flip: A Coupled Dynamics of Structural Balance and Opinions," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-23, October.
    7. Xi Chen & Xiao Zhang & Yong Xie & Wei Li, 2017. "Opinion Dynamics of Social-Similarity-Based Hegselmann–Krause Model," Complexity, Hindawi, vol. 2017, pages 1-12, December.
    8. Andreas Koulouris & Ioannis Katerelos & Theodore Tsekeris, 2013. "Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(1), pages 51-70.
    9. G Jordan Maclay & Moody Ahmad, 2021. "An agent based force vector model of social influence that predicts strong polarization in a connected world," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-42, November.
    10. Li, Mingwu & Dankowicz, Harry, 2019. "Impact of temporal network structures on the speed of consensus formation in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1355-1370.
    11. Hou, Jian & Li, Wenshan & Jiang, Mingyue, 2021. "Opinion dynamics in modified expressed and private model with bounded confidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    12. Liu, Qipeng & Wang, Xiaofan, 2013. "Social learning with bounded confidence and heterogeneous agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2368-2374.
    13. Christos Mavridis & Nikolas Tsakas, 2021. "Social Capital, Communication Channels and Opinion Formation," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 56(4), pages 635-678, May.
    14. Ding, Fei & Liu, Yun & Shen, Bo & Si, Xia-Meng, 2010. "An evolutionary game theory model of binary opinion formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1745-1752.
    15. Catherine A. Glass & David H. Glass, 2021. "Social Influence of Competing Groups and Leaders in Opinion Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 799-823, October.
    16. Hendrickx, Julien M., 2008. "Order preservation in a generalized version of Krause’s opinion dynamics model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5255-5262.
    17. Maciel, Marcelo V. & Martins, André C.R., 2020. "Ideologically motivated biases in a multiple issues opinion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    18. Xi Chen & Shen Zhao & Wei Li, 2019. "Opinion Dynamics Model Based on Cognitive Styles: Field-Dependence and Field-Independence," Complexity, Hindawi, vol. 2019, pages 1-12, February.
    19. Martins, André C.R., 2022. "Extremism definitions in opinion dynamics models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    20. Huang, Changwei & Hou, Yongzhao & Han, Wenchen, 2023. "Coevolution of consensus and cooperation in evolutionary Hegselmann–Krause dilemma with the cooperation cost," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:449:y:2016:i:c:p:426-436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.