IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v444y2016icp722-731.html
   My bibliography  Save this article

Multifractal detrended fluctuation analysis based on fractal fitting: The long-range correlation detection method for highway volume data

Author

Listed:
  • Dai, Meifeng
  • Hou, Jie
  • Ye, Dandan

Abstract

In this paper, we investigate the traffic time series for volume data observed on the Guangshen highway. We introduce a multifractal detrended fluctuation analysis based on fractal fitting (MFDFA-FF), which is one of the most effective methods to detect long-range correlations of time series. Through effective detecting of long-range correlations, highway volume can be predicted more accurately. In order to get a better detrend effect, we use fractal fitting to replace polynomial fitting in detrend process, the result shows that fractal fitting can get a better detrend effect than polynomial fitting and the MFDFA-FF method can achieve a more accurate research result. Then we introduce the Legendre spectrum to detect the multifractal property characterized by the long-range correlation and multifractality of Guangshen highway volume data.

Suggested Citation

  • Dai, Meifeng & Hou, Jie & Ye, Dandan, 2016. "Multifractal detrended fluctuation analysis based on fractal fitting: The long-range correlation detection method for highway volume data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 722-731.
  • Handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:722-731
    DOI: 10.1016/j.physa.2015.10.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115009322
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.10.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Xia & Chen, Huiping & Yuan, Yongzhuang & Wu, Ziqin, 2001. "Predictability of multifractal analysis of Hang Seng stock index in Hong Kong," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 301(1), pages 473-482.
    2. Dai, Meifeng & Zhang, Cheng & Zhang, Danping, 2014. "Multifractal and singularity analysis of highway volume data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 332-340.
    3. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    4. Shang, Pengjian & Lu, Yongbo & Kamae, Santi, 2008. "Detecting long-range correlations of traffic time series with multifractal detrended fluctuation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 82-90.
    5. Shang, Pengjian & Lu, Yongbo & Kama, Santi, 2006. "The application of Hölder exponent to traffic congestion warning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 769-776.
    6. Sun, Xia & Chen, Huiping & Wu, Ziqin & Yuan, Yongzhuang, 2001. "Multifractal analysis of Hang Seng index in Hong Kong stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 291(1), pages 553-562.
    7. J. F. Muzy & R. Baile & E. Bacry, 2013. "Random cascade model in the limit of infinite integral scale as the exponential of a non-stationary $1/f$ noise. Application to volatility fluctuations in stock markets," Papers 1301.4160, arXiv.org.
    8. Govindan, R.B. & Vjushin, Dmitry & Brenner, Stephen & Bunde, Armin & Havlin, Shlomo & Schellnhuber, Hans-Joachim, 2001. "Long-range correlations and trends in global climate models: Comparison with real data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 294(1), pages 239-248.
    9. Loiseau, Patrick & Médigue, Claire & Gonçalves, Paulo & Attia, Najmeddine & Seuret, Stéphane & Cottin, François & Chemla, Denis & Sorine, Michel & Barral, Julien, 2012. "Large deviations estimates for the multiscale analysis of heart rate variability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5658-5671.
    10. Li, Xuewei & Shang, Pengjian, 2007. "Multifractal classification of road traffic flows," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1089-1094.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gui, Jun & Zheng, Zeyu & Fu, Dianzheng & Fu, Yang & Liu, Zhi, 2021. "Long-term correlations and multifractality of toll-free calls in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    2. Chen, Hong & Zhu, Li & Jia, GuoZhu, 2020. "MF-DCCA between molecular properties and aqueous solubility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    3. Liu, Hongzhi & Zhang, Xingchen & Zhang, Xie, 2020. "Multiscale multifractal analysis on air traffic flow time series: A single airport departure flight case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Saâdaoui, Foued, 2018. "Testing for multifractality of Islamic stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 263-273.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hongzhi & Zhang, Xingchen & Zhang, Xie, 2020. "Multiscale multifractal analysis on air traffic flow time series: A single airport departure flight case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Zunino, L. & Tabak, B.M. & Figliola, A. & Pérez, D.G. & Garavaglia, M. & Rosso, O.A., 2008. "A multifractal approach for stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6558-6566.
    3. Yuan, Ying & Zhuang, Xin-tian & Jin, Xiu, 2009. "Measuring multifractality of stock price fluctuation using multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2189-2197.
    4. Xu, Kaiye & Shang, Pengjian & Feng, Guochen, 2015. "Multifractal time series analysis using the improved 0–1 test model," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 134-143.
    5. Zunino, Luciano & Figliola, Alejandra & Tabak, Benjamin M. & Pérez, Darío G. & Garavaglia, Mario & Rosso, Osvaldo A., 2009. "Multifractal structure in Latin-American market indices," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2331-2340.
    6. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    7. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractal analysis of Chinese stock volatilities based on the partition function approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(19), pages 4881-4888.
    8. Wang, Yi & Sun, Qi & Zhang, Zilu & Chen, Liqing, 2022. "A risk measure of the stock market that is based on multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    9. Liu, Zhicao & Ye, Yong & Ma, Feng & Liu, Jing, 2017. "Can economic policy uncertainty help to forecast the volatility: A multifractal perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 181-188.
    10. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractality in stock indexes: Fact or Fiction?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3605-3614.
    11. He, Hong-di & Wang, Jun-li & Wei, Hai-rui & Ye, Cheng & Ding, Yi, 2016. "Fractal behavior of traffic volume on urban expressway through adaptive fractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 518-525.
    12. Du, Guoxiong & Ning, Xuanxi, 2008. "Multifractal properties of Chinese stock market in Shanghai," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 261-269.
    13. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2007. "Scale invariant distribution and multifractality of volatility multipliers in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 343-350.
    14. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2011. "A copula–multifractal volatility hedging model for CSI 300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4260-4272.
    15. Liu, Zhichao & Ma, Feng & Long, Yujia, 2015. "High and low or close to close prices? Evidence from the multifractal volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 50-61.
    16. Wang, Qizhen & Zhu, Yingming & Yang, Liansheng & Mul, Remco A.H., 2017. "Coupling detrended fluctuation analysis of Asian stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 337-350.
    17. Dai, Meifeng & Zhang, Cheng & Zhang, Danping, 2014. "Multifractal and singularity analysis of highway volume data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 332-340.
    18. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    19. Lee, Minhyuk & Song, Jae Wook & Kim, Sondo & Chang, Woojin, 2018. "Asymmetric market efficiency using the index-based asymmetric-MFDFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1278-1294.
    20. Bai, Man-Ying & Zhu, Hai-Bo, 2010. "Power law and multiscaling properties of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1883-1890.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:722-731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.