IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v405y2014icp289-302.html
   My bibliography  Save this article

Stochastic volatility models at ρ=±1 as second class constrained Hamiltonian systems

Author

Listed:
  • Contreras G., Mauricio

Abstract

The stochastic volatility models used in the financial world are characterized, in the continuous-time case, by a set of two coupled stochastic differential equations for the underlying asset price S and volatility σ. In addition, the correlations of the two Brownian movements that drive the stochastic dynamics are measured by the correlation parameter ρ(−1≤ρ≤1). This stochastic system is equivalent to the Fokker–Planck equation for the transition probability density of the random variables S and σ. Solutions for the transition probability density of the Heston stochastic volatility model (Heston, 1993) were explored in Dragulescu and Yakovenko (2002), where the fundamental quantities such as the transition density itself, depend on ρ in such a manner that these are divergent for the extreme limit ρ=±1. The same divergent behavior appears in Hagan et al. (2002), where the probability density of the SABR model was analyzed. In an option pricing context, the propagator of the bi-dimensional Black–Scholes equation was obtained in Lemmens et al. (2008) in terms of the path integrals, and in this case, the propagator diverges again for the extreme values ρ=±1. This paper shows that these similar divergent behaviors are due to a universal property of the stochastic volatility models in the continuum: all of them are second class constrained systems for the most extreme correlated limit ρ=±1. In this way, the stochastic dynamics of the ρ=±1 cases are different of the −1<ρ<1 case, and it cannot be obtained as a continuous limit from the ρ≠±1 regimen. This conclusion is achieved by considering the Fokker–Planck equation or the bi-dimensional Black–Scholes equation as a Euclidean quantum Schrödinger equation. Then, the analysis of the underlying classical mechanics of the quantum model, implies that stochastic volatility models at ρ=±1 correspond to a constrained system. To study the dynamics in an appropriate form, Dirac’s method for constrained systems (Dirac, 1958, 1967) must be employed, and Dirac’s analysis reveals that the constraints are second class. In order to obtain the transition probability density or the option price correctly, one must evaluate the propagator as a constrained Hamiltonian path-integral (Henneaux and Teitelboim, 1992), in a similar way to the high energy gauge theory models. In fact, for all stochastic volatility models, after integrating over momentum variables, one obtains an effective Euclidean Lagrangian path-integral over the volatility alone. The role of the second class constraints is determining the underlying asset price S completely in terms of volatility, so it plays no role in the path integral. In order to examine the effect of the constraints on the dynamics for both extreme limits, the probability density function is evaluated by using semi-classical arguments, in an analogous manner to that developed in Hagan et al. (2002), for the SABR model.

Suggested Citation

  • Contreras G., Mauricio, 2014. "Stochastic volatility models at ρ=±1 as second class constrained Hamiltonian systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 289-302.
  • Handle: RePEc:eee:phsmap:v:405:y:2014:i:c:p:289-302
    DOI: 10.1016/j.physa.2014.03.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114002258
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.03.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    2. Contreras, Mauricio & Hojman, Sergio A., 2014. "Option pricing, stochastic volatility, singular dynamics and constrained path integrals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 391-403.
    3. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    4. D. Lemmens & M. Wouters & J. Tempere & S. Foulon, 2008. "A path integral approach to closed-form option pricing formulas with applications to stochastic volatility and interest rate models," Papers 0806.0932, arXiv.org.
    5. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bustamante, M. & Contreras, M., 2016. "Multi-asset Black–Scholes model as a variable second class constrained dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 540-572.
    2. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    3. Peter Christoffersen & Ruslan Goyenko & Kris Jacobs & Mehdi Karoui, 2018. "Illiquidity Premia in the Equity Options Market," Review of Financial Studies, Society for Financial Studies, vol. 31(3), pages 811-851.
    4. Steven L. Heston & Alberto G. Rossi, 2017. "A Spanning Series Approach to Options," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 7(1), pages 2-42.
    5. Amir Atiya & Steve Wall, 2009. "An analytic approximation of the likelihood function for the Heston model volatility estimation problem," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 289-296.
    6. Lars Stentoft, 2008. "Option Pricing using Realized Volatility," CREATES Research Papers 2008-13, Department of Economics and Business Economics, Aarhus University.
    7. F. Fornari & A. Mele, 1998. "ARCH Models and Option Pricing : The Continuous Time Connection," THEMA Working Papers 98-30, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    8. Jiangze Du & Shaojie Lai & Kin Keung Lai & Shifei Zhou, 2021. "A novel term structure stochastic model with adaptive correlation for trend analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5485-5498, October.
    9. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    10. Tak Siu, 2006. "Option Pricing Under Autoregressive Random Variance Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 62-75.
    11. Qiang Zhang & Rui Luo & Yaodong Yang & Yuanyuan Liu, 2018. "Benchmarking Deep Sequential Models on Volatility Predictions for Financial Time Series," Papers 1811.03711, arXiv.org.
    12. Zhang, Xibin & King, Maxwell L., 2008. "Box-Cox stochastic volatility models with heavy-tails and correlated errors," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 549-566, June.
    13. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    14. Gilles Daniel & Nathan Joseph & David Bree, 2005. "Stochastic volatility and the goodness-of-fit of the Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 199-211.
    15. Tore Selland Kleppe & Jun Yu & Hans J. skaug, 2011. "Simulated Maximum Likelihood Estimation for Latent Diffusion Models," Working Papers 10-2011, Singapore Management University, School of Economics.
    16. Chen, Yan & Wang, Xuancheng, 2015. "A hybrid stock trading system using genetic network programming and mean conditional value-at-risk," European Journal of Operational Research, Elsevier, vol. 240(3), pages 861-871.
    17. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    18. Katarzyna Toporek, 2012. "Simple is better. Empirical comparison of American option valuation methods," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 29.
    19. Liu, Chang & Chang, Chuo, 2021. "Combination of transition probability distribution and stable Lorentz distribution in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    20. Neely, Christopher J., 2009. "Forecasting foreign exchange volatility: Why is implied volatility biased and inefficient? And does it matter?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(1), pages 188-205, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:405:y:2014:i:c:p:289-302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.