IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i4p1216-1233.html
   My bibliography  Save this article

Stochastic persistence and stationary distribution in a Holling–Tanner type prey–predator model

Author

Listed:
  • Mandal, Partha Sarathi
  • Banerjee, Malay

Abstract

In this paper, we study a stochastic predator–prey model with Beddington–DeAngelis type functional response and logistic growth for predators. The deterministic model is already well-studied and we recall some important results here. We construct the stochastic model from the deterministic model by introducing multiplicative noise terms into the growth equations of prey and predator populations. For the stochastic model, we show that the system admits unique positive global solution starting from the positive initial value. Then we prove that the system is strongly persistent in mean when the intensity of environmental forcing is less than some threshold magnitudes. Finally, we show that the system has a stationary distribution under certain parametric restrictions. Numerical simulations are carried out to substantiate the analytical results.

Suggested Citation

  • Mandal, Partha Sarathi & Banerjee, Malay, 2012. "Stochastic persistence and stationary distribution in a Holling–Tanner type prey–predator model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1216-1233.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:4:p:1216-1233
    DOI: 10.1016/j.physa.2011.10.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711100817X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.10.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gani, J. & Swift, R.J., 2008. "An unexpected result in an approximate carrier-borne epidemic process," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2116-2120, October.
    2. Gakkhar, Sunita & Singh, Brahampal, 2006. "Dynamics of modified Leslie–Gower-type prey–predator model with seasonally varying parameters," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1239-1255.
    3. Spagnolo, B. & La Barbera, A., 2002. "Role of the noise on the transient dynamics of an ecosystem of interacting species," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 315(1), pages 114-124.
    4. R. Mankin & T. Laas & E. Soika & A. Ainsaar, 2007. "Noise-controlled slow–fast oscillations in predator–prey models with the Beddington functional response," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 59(2), pages 259-269, September.
    5. Mao, Xuerong & Marion, Glenn & Renshaw, Eric, 2002. "Environmental Brownian noise suppresses explosions in population dynamics," Stochastic Processes and their Applications, Elsevier, vol. 97(1), pages 95-110, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Daqing & Zuo, Wenjie & Hayat, Tasawar & Alsaedi, Ahmed, 2016. "Stationary distribution and periodic solutions for stochastic Holling–Leslie predator–prey systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 16-28.
    2. Debasis Mukherjee, 2022. "Stochastic Analysis of an Eco-Epidemic Model with Biological Control," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2539-2555, December.
    3. Liu, Meng & Bai, Chuanzhi, 2015. "A remark on a stochastic logistic model with Lévy jumps," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 521-526.
    4. Han, Qixing & Jiang, Daqing, 2015. "Periodic solution for stochastic non-autonomous multispecies Lotka–Volterra mutualism type ecosystem," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 204-217.
    5. Jana, Debaldev & Banerjee, Aniket & Samanta, G.P., 2017. "Degree of prey refuges: Control the competition among prey and foraging ability of predator," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 350-362.
    6. Mondal, Bapin & Ghosh, Uttam & Rahman, Md Sadikur & Saha, Pritam & Sarkar, Susmita, 2022. "Studies of different types of bifurcations analyses of an imprecise two species food chain model with fear effect and non-linear harvesting," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 111-135.
    7. Zhang, Qiumei & Jiang, Daqing, 2021. "Dynamics of stochastic predator-prey systems with continuous time delay," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Zhou, Yanli & Yuan, Sanling & Zhao, Dianli, 2016. "Threshold behavior of a stochastic SIS model with Le´vy jumps," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 255-267.
    9. Das, Parthasakha & Das, Pritha & Mukherjee, Sayan, 2020. "Stochastic dynamics of Michaelis–Menten kinetics based tumor-immune interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    10. Xie, Falan & Shan, Meijing & Lian, Xinze & Wang, Weiming, 2017. "Periodic solution of a stochastic HBV infection model with logistic hepatocyte growth," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 630-641.
    11. Lahrouz, Aadil & Omari, Lahcen, 2013. "Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 960-968.
    12. Ouyang, Mengqian & Li, Xiaoyue, 2015. "Permanence and asymptotical behavior of stochastic prey–predator system with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 539-559.
    13. Shi, Zhenfeng & Jiang, Daqing, 2022. "Dynamical behaviors of a stochastic HTLV-I infection model with general infection form and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    14. Xu, Dongsheng & Liu, Ming & Xu, Xiaofeng, 2020. "Analysis of a stochastic predator–prey system with modified Leslie–Gower and Holling-type IV schemes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    15. Yang, Bo, 2018. "A stochastic Feline immunodeficiency virus model with vertical transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 448-458.
    16. Liu, Yan & Yu, Pinrui & Chu, Dianhui & Su, Huan, 2019. "Stationary distribution of stochastic Markov jump coupled systems based on graph theory," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 188-195.
    17. Liu, Yuting & Shan, Meijing & Lian, Xinze & Wang, Weiming, 2016. "Stochastic extinction and persistence of a parasite–host epidemiological model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 586-602.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rao, Feng & Wang, Weiming & Li, Zhenqing, 2009. "Spatiotemporal complexity of a predator–prey system with the effect of noise and external forcing," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1634-1644.
    2. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing, 2021. "Ergodic property, extinction and density function of a stochastic SIR epidemic model with nonlinear incidence and general stochastic perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Tong, Jinying & Zhang, Zhenzhong & Bao, Jianhai, 2013. "The stationary distribution of the facultative population model with a degenerate noise," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 655-664.
    4. Huang, Zaitang & Cao, Junfei, 2018. "Ergodicity and bifurcations for stochastic logistic equation with non-Gaussian Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 1-10.
    5. Shi, Zhenfeng & Zhang, Xinhong & Jiang, Daqing, 2019. "Dynamics of an avian influenza model with half-saturated incidence," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 399-416.
    6. Wang, Weiming & Wang, Xiaoqin & Lin, Yezhi, 2008. "Complicated dynamics of a predator–prey system with Watt-type functional response and impulsive control strategy," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1427-1441.
    7. Liu, Jian & Qiao, Zijian & Ding, Xiaojian & Hu, Bing & Zang, Chuanlai, 2021. "Stochastic resonance induced weak signal enhancement over controllable potential-well asymmetry," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    8. Liu, Meng & Wang, Ke, 2009. "Survival analysis of stochastic single-species population models in polluted environments," Ecological Modelling, Elsevier, vol. 220(9), pages 1347-1357.
    9. Qi, Kai & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 548-570.
    10. Hu, Guixin & Li, Yanfang, 2015. "Asymptotic behaviors of stochastic periodic differential equation with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 264(C), pages 403-416.
    11. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Ahmad, Bashir, 2017. "Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 58-69.
    12. Roy, Jyotirmoy & Alam, Shariful, 2020. "Fear factor in a prey–predator system in deterministic and stochastic environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    13. Liu, Qun & Jiang, Daqing, 2020. "Threshold behavior in a stochastic SIR epidemic model with Logistic birth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    14. Xie, Falan & Shan, Meijing & Lian, Xinze & Wang, Weiming, 2017. "Periodic solution of a stochastic HBV infection model with logistic hepatocyte growth," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 630-641.
    15. Chun Zhang & Tao Yang & Shi-Xian Qu, 2021. "Impact of time delays and environmental noise on the extinction of a population dynamics model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(11), pages 1-16, November.
    16. Huang, Dongwei & Wang, Hongli & Feng, Jianfeng & Zhu, Zhi-wen, 2006. "Hopf bifurcation of the stochastic model on HAB nonlinear stochastic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 1072-1079.
    17. Qi, Haokun & Zhang, Shengqiang & Meng, Xinzhu & Dong, Huanhe, 2018. "Periodic solution and ergodic stationary distribution of two stochastic SIQS epidemic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 223-241.
    18. Liu, Yuting & Shan, Meijing & Lian, Xinze & Wang, Weiming, 2016. "Stochastic extinction and persistence of a parasite–host epidemiological model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 586-602.
    19. Gao, Yin & Gao, Jinwu & Yang, Xiangfeng, 2022. "The almost sure stability for uncertain delay differential equations based on normal lipschitz conditions," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    20. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:4:p:1216-1233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.