IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v27y1985i2p95-105.html
   My bibliography  Save this article

A micro-simulation model for pedestrian flows

Author

Listed:
  • Gipps, P.G.
  • Marksjö, B.

Abstract

The ability to predict how changes in the walking environment will affect the pedestrian flow is important to the designers of buildings and other constructed facilities. These changes can act on an individual pedestrian directly by diverting him from his preferred route, and indirectly through their effect on the other pedestrians. If the behaviour of individuals can be adequately modelled, and the appropriate distribution of pedestrian types is employed, their corporate behaviour be realistic. This paper presents a model for the interactions between pedestrians which is intended for use in a graphical computer simulation. The program runs on a microcomputer and uses interactive colour graphics to display the operation of the model and assist in the validation and verification of the model.

Suggested Citation

  • Gipps, P.G. & Marksjö, B., 1985. "A micro-simulation model for pedestrian flows," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 27(2), pages 95-105.
  • Handle: RePEc:eee:matcom:v:27:y:1985:i:2:p:95-105
    DOI: 10.1016/0378-4754(85)90027-8
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378475485900278
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0378-4754(85)90027-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Luisa Ballinas-Hernández & Angélica Muñoz-Meléndez & Alejandro Rangel-Huerta, 2011. "Multiagent System Applied to the Modeling and Simulation of Pedestrian Traffic in Counterflow," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 14(3), pages 1-2.
    2. Zhang, Qi & Han, Baoming, 2011. "Simulation model of pedestrian interactive behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 636-646.
    3. Ezaki, Takahiro & Yanagisawa, Daichi & Ohtsuka, Kazumichi & Nishinari, Katsuhiro, 2012. "Simulation of space acquisition process of pedestrians using Proxemic Floor Field Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 291-299.
    4. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    5. Perez, Gay Jane & Tapang, Giovanni & Lim, May & Saloma, Caesar, 2002. "Streaming, disruptive interference and power-law behavior in the exit dynamics of confined pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(3), pages 609-618.
    6. Seitz, Michael J. & Dietrich, Felix & Köster, Gerta, 2015. "The effect of stepping on pedestrian trajectories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 594-604.
    7. Goldsztein, Guillermo H., 2017. "Crowd of individuals walking in opposite directions. A toy model to study the segregation of the group into lanes of individuals moving in the same direction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 162-173.
    8. Bin Lei & Jinliang Xu & Menghui Li & Haoru Li & Jin Li & Zhen Cao & Yarui Hao & Yuan Zhang, 2019. "Enhancing Role of Guiding Signs Setting in Metro Stations with Incorporation of Microscopic Behavior of Pedestrians," Sustainability, MDPI, vol. 11(21), pages 1-14, November.
    9. Srećko KRILE & Nikolai MAIOROV & Vladimir FETISOV, 2018. "Forecasting The Operational Activities Of The Sea Passenger Terminal Using Intelligent Technologies," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 13(1), pages 27-36, March.
    10. Blue, Victor J. & Adler, Jeffrey L., 2001. "Cellular automata microsimulation for modeling bi-directional pedestrian walkways," Transportation Research Part B: Methodological, Elsevier, vol. 35(3), pages 293-312, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:27:y:1985:i:2:p:95-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.