IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v178y2020icp151-165.html
   My bibliography  Save this article

Periodic dynamics of rubella epidemic under standard and fractional Caputo operator with real data from Pakistan

Author

Listed:
  • Qureshi, Sania

Abstract

Memory effects of epidemics play a vital role in mathematical models of infectious diseases. In this research study, an epidemiological SEIR (Susceptible, Exposed, Infectious, Removed) type model for the rubella epidemic has been proposed via classical and fractional order Caputo differential operators while assuming the periodic transmission rate β(t). The Caputo model has been investigated for the existence and uniqueness of its solutions via fixed point theory while the unique non-negative solution remains bounded within the biologically feasible region. Later, the non-fixed biological parameters of the classical and the Caputo model are obtained via nonlinear least squares fitting technique taking the real monthly cases for the rubella epidemic in Pakistan for the period 2010–2012. The performance rate of the Caputo model is 35% higher than that of the model with integer order derivative. The numerical simulations are obtained under different cases and it is highly suggested that the infectious rate σ must be controlled as much as possible to eradicate the rubella epidemic.

Suggested Citation

  • Qureshi, Sania, 2020. "Periodic dynamics of rubella epidemic under standard and fractional Caputo operator with real data from Pakistan," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 151-165.
  • Handle: RePEc:eee:matcom:v:178:y:2020:i:c:p:151-165
    DOI: 10.1016/j.matcom.2020.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420301919
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ullah, Saif & Khan, Muhammad Altaf & Farooq, Muhammad & Gul, Taza, 2019. "Modeling and analysis of Tuberculosis (TB) in Khyber Pakhtunkhwa, Pakistan," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 181-199.
    2. Rahman, Ghaus ur & Shah, Kamal & Haq, Fazal & Ahmad, Naveed, 2018. "Host vector dynamics of pine wilt disease model with convex incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 31-39.
    3. Qureshi, Sania & Memon, Zaib-un-Nisa, 2020. "Monotonically decreasing behavior of measles epidemic well captured by Atangana–Baleanu–Caputo fractional operator under real measles data of Pakistan," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    4. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 111-118.
    5. Qureshi, Sania & Yusuf, Abdullahi & Shaikh, Asif Ali & Inc, Mustafa, 2019. "Transmission dynamics of varicella zoster virus modeled by classical and novel fractional operators using real statistical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    6. Muhammad Altaf Khan & S. F. Saddiq & Saeed Islam & Ilyas Khan & Dennis Ling Chuan Ching, 2014. "Epidemic Model of Leptospirosis Containing Fractional Order," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-8, December.
    7. Qureshi, Sania & Atangana, Abdon, 2019. "Mathematical analysis of dengue fever outbreak by novel fractional operators with field data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    8. Morales-Delgado, V.F. & Gómez-Aguilar, J.F. & Saad, Khaled M. & Khan, Muhammad Altaf & Agarwal, P., 2019. "Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: A fractional calculus approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 48-65.
    9. Ullah, Saif & Altaf Khan, Muhammad & Farooq, Muhammad, 2018. "A fractional model for the dynamics of TB virus," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 63-71.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Batabyal, Saikat, 2021. "COVID-19: Perturbation dynamics resulting chaos to stable with seasonality transmission," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    2. Yusuf, Abdullahi & Tasiu Mustapha, Umar & Abdulkadir Sulaiman, Tukur & Hincal, Evren & Bayram, Mustafa, 2021. "Modeling the effect of horizontal and vertical transmissions of HIV infection with Caputo fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    3. Arshad, Sadia & Siddique, Imran & Nawaz, Fariha & Shaheen, Aqila & Khurshid, Hina, 2023. "Dynamics of a fractional order mathematical model for COVID-19 epidemic transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    4. Trikha, Pushali & Mahmoud, Emad E. & Jahanzaib, Lone Seth & Matoog, R.T. & Abdel-Aty, Mahmoud, 2021. "Fractional order biological snap oscillator: Analysis and control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    5. Hussain, Takasar & Aslam, Adnan & Ozair, Muhammad & Tasneem, Fatima & Gómez-Aguilar, J.F., 2021. "Dynamical aspects of pine wilt disease and control measures," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wanting & Khan, Muhammad Altaf & Fatmawati, & Kumam, P. & Thounthong, P., 2019. "A comparison study of bank data in fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 369-384.
    2. Qureshi, Sania & Memon, Zaib-un-Nisa, 2020. "Monotonically decreasing behavior of measles epidemic well captured by Atangana–Baleanu–Caputo fractional operator under real measles data of Pakistan," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    3. Yusuf, Abdullahi & Qureshi, Sania & Feroz Shah, Syed, 2020. "Mathematical analysis for an autonomous financial dynamical system via classical and modern fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    4. Qureshi, Sania & Atangana, Abdon, 2020. "Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    5. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 32-40.
    6. Li, Zhongfei & Liu, Zhuang & Khan, Muhammad Altaf, 2020. "Fractional investigation of bank data with fractal-fractional Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    7. Berhe, Hailay Weldegiorgis & Qureshi, Sania & Shaikh, Asif Ali, 2020. "Deterministic modeling of dysentery diarrhea epidemic under fractional Caputo differential operator via real statistical analysis," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    8. Mustapha, Umar Tasiu & Qureshi, Sania & Yusuf, Abdullahi & Hincal, Evren, 2020. "Fractional modeling for the spread of Hookworm infection under Caputo operator," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    9. Qureshi, Sania, 2020. "Real life application of Caputo fractional derivative for measles epidemiological autonomous dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    10. Qureshi, Sania & Jan, Rashid, 2021. "Modeling of measles epidemic with optimized fractional order under Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    11. Abro, Kashif Ali & Khan, Ilyas & Nisar, Kottakkaran Sooppy, 2019. "Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 40-45.
    12. Sekerci, Yadigar & Ozarslan, Ramazan, 2020. "Respiration Effect on Plankton–Oxygen Dynamics in view of non-singular time fractional derivatives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    13. Jan, Rashid & Khan, Muhammad Altaf & Kumam, Poom & Thounthong, Phatiphat, 2019. "Modeling the transmission of dengue infection through fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 189-216.
    14. Abu Arqub, Omar & Al-Smadi, Mohammed, 2020. "An adaptive numerical approach for the solutions of fractional advection–diffusion and dispersion equations in singular case under Riesz’s derivative operator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    15. Zuñiga Aguilar, C.J. & Gómez-Aguilar, J.F. & Alvarado-Martínez, V.M. & Romero-Ugalde, H.M., 2020. "Fractional order neural networks for system identification," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    16. Akgül, Ali & Modanli, Mahmut, 2019. "Crank–Nicholson difference method and reproducing kernel function for third order fractional differential equations in the sense of Atangana–Baleanu Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 10-16.
    17. Shah, Syed Azhar Ali & Khan, Muhammad Altaf & Farooq, Muhammad & Ullah, Saif & Alzahrani, Ebraheem O., 2020. "A fractional order model for Hepatitis B virus with treatment via Atangana–Baleanu derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    18. Yadav, Ram Prasad & Renu Verma,, 2020. "A numerical simulation of fractional order mathematical modeling of COVID-19 disease in case of Wuhan China," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    19. Qureshi, Sania & Aziz, Shaheen, 2020. "Fractional modeling for a chemical kinetic reaction in a batch reactor via nonlocal operator with power law kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    20. Qureshi, Sania & Bonyah, Ebenezer & Shaikh, Asif Ali, 2019. "Classical and contemporary fractional operators for modeling diarrhea transmission dynamics under real statistical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:178:y:2020:i:c:p:151-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.