IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v124y2024ics0305048323001639.html
   My bibliography  Save this article

Optimization of train schedule with uncertain maintenance plans in high-speed railways: A stochastic programming approach

Author

Listed:
  • Ji, Hangyu
  • Wang, Rui
  • Zhang, Chuntian
  • Yin, Jiateng
  • Ma, Lin
  • Yang, Lixing

Abstract

In high-speed railways, unexpected disturbances on maintenance activities may cause serious delays of the scheduled trains and greatly affect the service quality for traveling passengers. In contrast to most existing studies that focused on deterministic maintenance activities, this paper develops a two-stage stochastic programming approach to address the optimization of train schedules under uncertain maintenance plans. Specifically, in the first stage, we aim to determine the departure times of trains from the origin station, since this information needs to be public to passengers in advanced. The objective function is to minimize the expected travel time of trains under uncertain duration time of maintenance activities. In the second stage, given the specific information of maintenance activities, we generate the train schedule by adjusting the stop patterns, train orders and the assignment of tracks at key stations. Due to the computational difficulties arising from the large number of discrete decision variables, we particularly develop a dual decomposition based solution approach to solve the two-stage stochastic model. Our approach decomposes the original problem into a set of scenario-dependent subproblems with much fewer number of variables, which greatly improves the computational efficiency. Finally, we conduct several sets of real-world instances based on the Beijing–Guangzhou high-speed railway corridor to verify the effectiveness of the proposed model and solution approach. The results demonstrate that our approach evidently outperforms state-of-art solvers (Gurobi), especially for large-scale instances that Gurobi cannot even return feasible solutions.

Suggested Citation

  • Ji, Hangyu & Wang, Rui & Zhang, Chuntian & Yin, Jiateng & Ma, Lin & Yang, Lixing, 2024. "Optimization of train schedule with uncertain maintenance plans in high-speed railways: A stochastic programming approach," Omega, Elsevier, vol. 124(C).
  • Handle: RePEc:eee:jomega:v:124:y:2024:i:c:s0305048323001639
    DOI: 10.1016/j.omega.2023.102999
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048323001639
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2023.102999?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:124:y:2024:i:c:s0305048323001639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.