Advanced Search
MyIDEAS: Login to save this article or follow this journal

A test for the mean vector with fewer observations than the dimension


Author Info

  • Srivastava, Muni S.
  • Du, Meng
Registered author(s):


    In this paper, we consider a test for the mean vector of independent and identically distributed multivariate normal random vectors where the dimension p is larger than or equal to the number of observations N. This test is invariant under scalar transformations of each component of the random vector. Theories and simulation results show that the proposed test is superior to other two tests available in the literature. Interest in such significance test for high-dimensional data is motivated by DNA microarrays. However, the methodology is valid for any application which involves high-dimensional data.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 99 (2008)
    Issue (Month): 3 (March)
    Pages: 386-402

    as in new window
    Handle: RePEc:eee:jmvana:v:99:y:2008:i:3:p:386-402

    Contact details of provider:
    Web page:

    Order Information:

    Related research

    Keywords: Asymptotic distribution DNA microarray Multivariate normal Power comparison Significance test;


    No references listed on IDEAS
    You can help add them by filling out this form.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Thulin, Måns, 2014. "A high-dimensional two-sample test for the mean using random subspaces," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 26-38.
    2. Schott, James R., 2008. "A test for independence of two sets of variables when the number of variables is large relative to the sample size," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 3096-3102, December.
    3. Katayama, Shota & Kano, Yutaka & Srivastava, Muni S., 2013. "Asymptotic distributions of some test criteria for the mean vector with fewer observations than the dimension," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 410-421.
    4. Srivastava, Muni S., 2009. "A test for the mean vector with fewer observations than the dimension under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 518-532, March.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:3:p:386-402. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.