IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v169y2019icp300-311.html
   My bibliography  Save this article

Improved loss estimation for a normal mean matrix

Author

Listed:
  • Matsuda, Takeru
  • Strawderman, William E.

Abstract

We investigate improved loss estimation in the matrix mean estimation problem. Specifically, for estimators of a normal mean matrix, we consider estimation of the Frobenius loss. Based on the singular values of the observation, we develop loss estimators that dominate the unbiased loss estimator for a broad class of matrix mean estimators including the Efron–Morris estimator. This is an extension of the results of Johnstone (1988) for a normal mean vector. We also provide improved estimators of loss for reduced-rank estimators. Numerical results show the effectiveness of the proposed loss estimators.

Suggested Citation

  • Matsuda, Takeru & Strawderman, William E., 2019. "Improved loss estimation for a normal mean matrix," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 300-311.
  • Handle: RePEc:eee:jmvana:v:169:y:2019:i:c:p:300-311
    DOI: 10.1016/j.jmva.2018.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X17302324
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2018.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2007. "Methods for improvement in estimation of a normal mean matrix," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1592-1610, September.
    2. A. Mukherjee & K. Chen & N. Wang & J. Zhu, 2015. "On the degrees of freedom of reduced-rank estimators in multivariate regression," Biometrika, Biometrika Trust, vol. 102(2), pages 457-477.
    3. Takeru Matsuda & Fumiyasu Komaki, 2015. "Singular value shrinkage priors for Bayesian prediction," Biometrika, Biometrika Trust, vol. 102(4), pages 843-854.
    4. Zheng, Z., 1986. "On estimation of matrix of normal mean," Journal of Multivariate Analysis, Elsevier, vol. 18(1), pages 70-82, February.
    5. Dominique Fourdrinier & William Strawderman, 2003. "On Bayes and unbiased estimators of loss," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 803-816, December.
    6. Aurélie Boisbunon & Stéphane Canu & Dominique Fourdrinier & William Strawderman & Martin T. Wells, 2014. "Akaike's Information Criterion, C p and Estimators of Loss for Elliptically Symmetric Distributions," International Statistical Review, International Statistical Institute, vol. 82(3), pages 422-439, December.
    7. Konno, Yoshihiko, 1991. "On estimation of a matrix of normal means with unknown covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 36(1), pages 44-55, January.
    8. Hansen, Niels Richard, 2018. "On Stein’s unbiased risk estimate for reduced rank estimators," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 76-82.
    9. Carl Eckart & Gale Young, 1936. "The approximation of one matrix by another of lower rank," Psychometrika, Springer;The Psychometric Society, vol. 1(3), pages 211-218, September.
    10. Tsukuma, Hisayuki, 2008. "Admissibility and minimaxity of Bayes estimators for a normal mean matrix," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2251-2264, November.
    11. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2015. "A unified approach to estimating a normal mean matrix in high and low dimensions," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 312-328.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stéphane Canu & Dominique Fourdrinier, 2023. "Data based loss estimation of the mean of a spherical distribution with a residual vector," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(8), pages 851-878, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuasa, Ryota & Kubokawa, Tatsuya, 2020. "Ridge-type linear shrinkage estimation of the mean matrix of a high-dimensional normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    2. Tsukuma, Hisayuki, 2009. "Generalized Bayes minimax estimation of the normal mean matrix with unknown covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2296-2304, November.
    3. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2017. "Proper Bayes and minimax predictive densities related to estimation of a normal mean matrix," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 138-150.
    4. Yuasa, Ryota & Kubokawa, Tatsuya, 2023. "Weighted shrinkage estimators of normal mean matrices and dominance properties," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    5. Tsukuma, Hisayuki, 2010. "Shrinkage priors for Bayesian estimation of the mean matrix in an elliptically contoured distribution," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1483-1492, July.
    6. Canu, Stéphane & Fourdrinier, Dominique, 2017. "Unbiased risk estimates for matrix estimation in the elliptical case," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 60-72.
    7. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2015. "A unified approach to estimating a normal mean matrix in high and low dimensions," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 312-328.
    8. Xu, Kai & He, Daojiang, 2015. "Further results on estimation of covariance matrix," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 11-20.
    9. Hisayuki Tsukuma & Tatsuya Kubokawa, 2014. "A Unified Approach to Estimating a Normal Mean Matrix in High and Low Dimensions," CIRJE F-Series CIRJE-F-926, CIRJE, Faculty of Economics, University of Tokyo.
    10. Sewell, Daniel K., 2018. "Visualizing data through curvilinear representations of matrices," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 255-270.
    11. Shalabh, 1998. "Improved Estimation in Measurement Error Models Through Stein Rule Procedure," Journal of Multivariate Analysis, Elsevier, vol. 67(1), pages 35-48, October.
    12. Kohei Adachi & Nickolay T. Trendafilov, 2016. "Sparse principal component analysis subject to prespecified cardinality of loadings," Computational Statistics, Springer, vol. 31(4), pages 1403-1427, December.
    13. Norman Cliff, 1962. "Analytic rotation to a functional relationship," Psychometrika, Springer;The Psychometric Society, vol. 27(3), pages 283-295, September.
    14. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.
    15. Nitis Mukhopadhyay, 2021. "On Rereading Stein’s Lemma: Its Intrinsic Connection with Cramér-Rao Identity and Some New Identities," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 355-367, March.
    16. Alfredo García-Hiernaux & José Casals & Miguel Jerez, 2012. "Estimating the system order by subspace methods," Computational Statistics, Springer, vol. 27(3), pages 411-425, September.
    17. Mitzi Cubilla‐Montilla & Ana‐Belén Nieto‐Librero & Ma Purificación Galindo‐Villardón & Ma Purificación Vicente Galindo & Isabel‐María Garcia‐Sanchez, 2019. "Are cultural values sufficient to improve stakeholder engagement human and labour rights issues?," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 26(4), pages 938-955, July.
    18. Stegeman, Alwin, 2016. "A new method for simultaneous estimation of the factor model parameters, factor scores, and unique parts," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 189-203.
    19. Jos Berge & Henk Kiers, 1993. "An alternating least squares method for the weighted approximation of a symmetric matrix," Psychometrika, Springer;The Psychometric Society, vol. 58(1), pages 115-118, March.
    20. Shimeng Huang & Henry Wolkowicz, 2018. "Low-rank matrix completion using nuclear norm minimization and facial reduction," Journal of Global Optimization, Springer, vol. 72(1), pages 5-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:169:y:2019:i:c:p:300-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.