IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v168y2018icp323-333.html
   My bibliography  Save this article

Cumulative damage and times of occurrence for a multicomponent system: A discrete time approach

Author

Listed:
  • Fierro, Raúl
  • Leiva, Víctor
  • Maidana, Jean Paul

Abstract

A discrete time stochastic model for a multicomponent system is presented, which consists of two random vectors representing a multivariate cumulative damage and their corresponding failure times. The times of occurrence of some events, for the system components, are correlated and their associate cumulative damages are assumed to be additive. Since, in general, it is not possible to obtain a closed form for the distribution of these random vectors, their asymptotic distribution is studied. A central limit theorem and a large deviation principle for the multivariate cumulative damage are derived. An application to neurophysiology is presented. Parameters associated with the mean and covariance matrix of the shocks are assumed known. Otherwise, they can be estimated through well-known methods. However, the critical levels (thresholds) of resistance for the components of the system are assumed to be unknown parameters. One of the objectives of this work is to carry out asymptotic statistical inference on these parameters. To this end, the asymptotic distribution of certain Mahalanobis type distances is studied, which enables us to estimate the parameters of interest and to test hypotheses concerning their values. Numerical results complete the analysis.

Suggested Citation

  • Fierro, Raúl & Leiva, Víctor & Maidana, Jean Paul, 2018. "Cumulative damage and times of occurrence for a multicomponent system: A discrete time approach," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 323-333.
  • Handle: RePEc:eee:jmvana:v:168:y:2018:i:c:p:323-333
    DOI: 10.1016/j.jmva.2018.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X17306644
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2018.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pellerey, Franco, 1999. "Stochastic Comparisons for Multivariate Shock Models," Journal of Multivariate Analysis, Elsevier, vol. 71(1), pages 42-55, October.
    2. Li, Haijun & Xu, Susan H., 2001. "Stochastic Bounds and Dependence Properties of Survival Times in a Multicomponent Shock Model," Journal of Multivariate Analysis, Elsevier, vol. 76(1), pages 63-89, January.
    3. Cirillo, Pasquale & Hüsler, Jürg, 2011. "Extreme shock models: An alternative perspective," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 25-30, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kulik, Rafal & Szekli, Ryszard, 2005. "Dependence orderings for some functionals of multivariate point processes," Journal of Multivariate Analysis, Elsevier, vol. 92(1), pages 145-173, January.
    2. Haijun Li & Susan H. Xu, 2001. "Directionally Convex Comparison of Correlated First Passage Times," Methodology and Computing in Applied Probability, Springer, vol. 3(4), pages 365-378, December.
    3. Li, Haijun, 2003. "Association of multivariate phase-type distributions, with applications to shock models," Statistics & Probability Letters, Elsevier, vol. 64(4), pages 381-392, October.
    4. Shaked, Moshe, 2007. "Stochastic comparisons of multivariate random sums in the Laplace transform order, with applications," Statistics & Probability Letters, Elsevier, vol. 77(12), pages 1339-1344, July.
    5. Yang, Shunkun & Shao, Qi & Bian, Chong, 2022. "Reliability analysis of ensemble fault tolerance for soft error mitigation against complex radiation effect," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Michel Denuit & Esther Frostig & Benny Levikson, 2007. "Supermodular Comparison of Time-to-Ruin Random Vectors," Methodology and Computing in Applied Probability, Springer, vol. 9(1), pages 41-54, March.
    7. Badía, F.G. & Sangüesa, C. & Cha, J.H., 2014. "Stochastic comparison of multivariate conditionally dependent mixtures," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 82-94.
    8. Nader Ebrahimi, 2004. "Indirect assessment of the bivariate survival function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(3), pages 435-448, September.
    9. Ji Hwan Cha & Maxim Finkelstein, 2019. "Optimal preventive maintenance for systems having a continuous output and operating in a random environment," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 327-350, July.
    10. Hu, Taizhong & Khaledi, Baha-Eldin & Shaked, Moshe, 2003. "Multivariate hazard rate orders," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 173-189, January.
    11. Mesfioui, Mhamed & Denuit, Michel M., 2015. "Comonotonicity, orthant convex order and sums of random variables," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 356-364.
    12. Eryilmaz, Serkan, 2015. "Assessment of a multi-state system under a shock model," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 1-8.
    13. repec:bpj:demode:v:6:y:2018:i:1:p:131-138:n:8 is not listed on IDEAS
    14. Lirong Cui & Haijun Li, 2006. "Opportunistic Maintenance for Multi-component Shock Models," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(3), pages 493-511, July.
    15. Eryilmaz, Serkan & Kan, Cihangir, 2019. "Reliability and optimal replacement policy for an extreme shock model with a change point," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    16. J. M. Fernández-Ponce & M. R. Rodríguez-Griñolo, 2017. "New properties of the orthant convex-type stochastic orders," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 618-637, September.
    17. Mercier, Sophie & Pham, Hai Ha, 2017. "A bivariate failure time model with random shocks and mixed effects," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 33-51.
    18. Wang, Xiaoyue & Zhao, Xian & Wang, Siqi & Sun, Leping, 2020. "Reliability and maintenance for performance-balanced systems operating in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    19. Meango, Toualith Jean-Marc & Ouali, Mohamed-Salah, 2020. "Failure interaction model based on extreme shock and Markov processes," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    20. Zhao, Xian & Wang, Siqi & Wang, Xiaoyue & Cai, Kui, 2018. "A multi-state shock model with mutative failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 1-11.
    21. Masih-Tehrani, Behdad & Xu, Susan H. & Kumara, Soundar & Li, Haijun, 2011. "A single-period analysis of a two-echelon inventory system with dependent supply uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1128-1151, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:168:y:2018:i:c:p:323-333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.