IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v167y2018icp1-14.html
   My bibliography  Save this article

Local and global temporal correlations for longitudinal data

Author

Listed:
  • Zhou, Yang
  • Lin, Shu-Chin
  • Wang, Jane-Ling

Abstract

Quantifying the association between a pair of random functions recorded over a time period is of general interest. Several methods have been proposed in the literature but they either suffer from an ill-posed problem intrinsic to functional data or are suitable only for intensely recorded longitudinal data. In this paper we provide new methods that overcome these challenges by investigating the temporal Pearson correlation between paired random functions. We investigate both a local temporal correlation measure and a global summary measure of the dynamic temporal correlations and propose a nonparametric estimation method that covers both intensely observed and sparsely observed longitudinal data. Asymptotic results of the estimators are derived under mild conditions and the method is illustrated via simulations and a benchmark data set.

Suggested Citation

  • Zhou, Yang & Lin, Shu-Chin & Wang, Jane-Ling, 2018. "Local and global temporal correlations for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 1-14.
  • Handle: RePEc:eee:jmvana:v:167:y:2018:i:c:p:1-14
    DOI: 10.1016/j.jmva.2018.03.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X1730341X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2018.03.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    2. Dubin, Joel A. & Muller, Hans-Georg, 2005. "Dynamical Correlation for Multivariate Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 872-881, September.
    3. He, Guozhong & Müller, Hans-Georg & Wang, Jane-Ling, 2003. "Functional canonical analysis for square integrable stochastic processes," Journal of Multivariate Analysis, Elsevier, vol. 85(1), pages 54-77, April.
    4. Cupidon, J. & Eubank, R. & Gilliam, D. & Ruymgaart, F., 2008. "Some properties of canonical correlations and variates in infinite dimensions," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1083-1104, July.
    5. Wenjing Yang & Hans‐Georg Müller & Ulrich Stadtmüller, 2011. "Functional singular component analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 303-324, June.
    6. Shin, Hyejin & Lee, Seokho, 2015. "Canonical correlation analysis for irregularly and sparsely observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 1-18.
    7. Eubank, R.L. & Hsing, Tailen, 2008. "Canonical correlation for stochastic processes," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1634-1661, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Hanbing & Li, Rui & Zhang, Riquan & Lian, Heng, 2020. "Nonlinear functional canonical correlation analysis via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    2. Cho, Haeran & Goude, Yannig & Brossat, Xavier & Yao, Qiwei, 2013. "Modeling and forecasting daily electricity load curves: a hybrid approach," LSE Research Online Documents on Economics 49634, London School of Economics and Political Science, LSE Library.
    3. Shin, Hyejin & Lee, Seokho, 2015. "Canonical correlation analysis for irregularly and sparsely observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 1-18.
    4. Hans-Georg Müller & Wenjing Yang, 2010. "Dynamic relations for sparsely sampled Gaussian processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 1-29, May.
    5. Ruzong Fan & Hong-Bin Fang, 2022. "Stochastic functional linear models and Malliavin calculus," Computational Statistics, Springer, vol. 37(2), pages 591-611, April.
    6. Sang, Peijun & Wang, Liangliang & Cao, Jiguo, 2019. "Weighted empirical likelihood inference for dynamical correlations," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 194-206.
    7. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    8. Xiongtao Dai & Zhenhua Lin & Hans‐Georg Müller, 2021. "Modeling sparse longitudinal data on Riemannian manifolds," Biometrics, The International Biometric Society, vol. 77(4), pages 1328-1341, December.
    9. Alvarez, Agustín & Boente, Graciela & Kudraszow, Nadia, 2019. "Robust sieve estimators for functional canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 46-62.
    10. Ji Yeh Choi & Heungsun Hwang & Michio Yamamoto & Kwanghee Jung & Todd S. Woodward, 2017. "A Unified Approach to Functional Principal Component Analysis and Functional Multiple-Set Canonical Correlation," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 427-441, June.
    11. Mariano J. Valderrama & Francisco A. Ocaña & Ana M. Aguilera & Francisco M. Ocaña-Peinado, 2010. "Forecasting Pollen Concentration by a Two-Step Functional Model," Biometrics, The International Biometric Society, vol. 66(2), pages 578-585, June.
    12. Guochang Wang & Xiang-Nan Feng & Min Chen, 2016. "Functional Partial Linear Single-index Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 261-274, March.
    13. Kehui Chen & Xiaoke Zhang & Alexander Petersen & Hans-Georg Müller, 2017. "Quantifying Infinite-Dimensional Data: Functional Data Analysis in Action," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 582-604, December.
    14. Jadhav, Sneha & Ma, Shuangge, 2021. "An association test for functional data based on Kendall’s Tau," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    15. Chen, Lu-Hung & Jiang, Ci-Ren, 2018. "Sensible functional linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 39-52.
    16. Chen, Xuerong & Li, Haoqi & Liang, Hua & Lin, Huazhen, 2019. "Functional response regression analysis," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 218-233.
    17. Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
    18. Tomas Macak, 2021. "Stability of Dependencies of Contingent Subgroups with Merged Groups: Vaccination Case Study," Mathematics, MDPI, vol. 9(22), pages 1-12, November.
    19. Şentürk, Damla & Ghosh, Samiran & Nguyen, Danh V., 2014. "Exploratory time varying lagged regression: Modeling association of cognitive and functional trajectories with expected clinic visits in older adults," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 1-15.
    20. Nicoleta Serban & Huijing Jiang, 2012. "Multilevel Functional Clustering Analysis," Biometrics, The International Biometric Society, vol. 68(3), pages 805-814, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:167:y:2018:i:c:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.