IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v165y2018icp216-230.html
   My bibliography  Save this article

Identification problem of transition models for repeated measurement data with nonignorable missing values

Author

Listed:
  • Morikawa, Kosuke
  • Kano, Yutaka

Abstract

In this paper, we consider a transition model on a response variable to describe repeated measurement data and we provide sufficient conditions to check model identifiability when analyzing data with nonignorable missing values. The sufficient conditions can give us intuitive model characteristics to achieve identifiability. In addition to the model assumptions on the response variable, a parametric model of the missing-data mechanism is often assumed. In this article, we consider identifiability in two situations: (i) both the response variable distribution and the missing-data mechanism are parametric; (ii) one of them is nonparametric, i.e., the global model is semiparametric. Useful identifiable models are proposed on the basis of these conditions. We also present an application to data of a comparative trial of two dosages of depot medroxyprogesterone acetate.

Suggested Citation

  • Morikawa, Kosuke & Kano, Yutaka, 2018. "Identification problem of transition models for repeated measurement data with nonignorable missing values," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 216-230.
  • Handle: RePEc:eee:jmvana:v:165:y:2018:i:c:p:216-230
    DOI: 10.1016/j.jmva.2017.12.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X17301318
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2017.12.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheng Wang & Jun Shao & Jae Kwang Kim, "undated". "An Instrumental Variable Approach for Identification and Estimation with Nonignorable Nonresponse," Mathematica Policy Research Reports a9593fac2c9746f486d2162f9, Mathematica Policy Research.
    2. repec:mpr:mprres:8160 is not listed on IDEAS
    3. Gong Tang, 2003. "Analysis of multivariate missing data with nonignorable nonresponse," Biometrika, Biometrika Trust, vol. 90(4), pages 747-764, December.
    4. Jolene Birmingham & Andrea Rotnitzky & Garrett M. Fitzmaurice, 2003. "Pattern–mixture and selection models for analysing longitudinal data with monotone missing patterns," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 275-297, February.
    5. Jiwei Zhao & Jun Shao, 2015. "Semiparametric Pseudo-Likelihoods in Generalized Linear Models With Nonignorable Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1577-1590, December.
    6. Kenneth J. Wilkins & Garrett M. Fitzmaurice, 2006. "A Hybrid Model for Nonignorable Dropout in Longitudinal Binary Responses," Biometrics, The International Biometric Society, vol. 62(1), pages 168-176, March.
    7. Ying Yuan & Roderick J. A. Little, 2009. "Mixed-Effect Hybrid Models for Longitudinal Data with Nonignorable Dropout," Biometrics, The International Biometric Society, vol. 65(2), pages 478-486, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mojirsheibani, Majid, 2021. "On classification with nonignorable missing data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    2. Majid Mojirsheibani, 2022. "On the maximal deviation of kernel regression estimators with NMAR response variables," Statistical Papers, Springer, vol. 63(5), pages 1677-1705, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Xia & Guo, Jianhua & Yang, Guangren, 2017. "On the identifiability and estimation of generalized linear models with parametric nonignorable missing data mechanism," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 64-80.
    2. Xuerong Chen & Guoqing Diao & Jing Qin, 2020. "Pseudo likelihood‐based estimation and testing of missingness mechanism function in nonignorable missing data problems," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1377-1400, December.
    3. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
    4. Jiwei Zhao, 2017. "Reducing bias for maximum approximate conditional likelihood estimator with general missing data mechanism," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(3), pages 577-593, July.
    5. Zhang, Jing & Wang, Qihua & Kang, Jian, 2020. "Feature screening under missing indicator imputation with non-ignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    6. Christoph Breunig & Stephan Martin, 2020. "Nonclassical Measurement Error in the Outcome Variable," Papers 2009.12665, arXiv.org, revised May 2021.
    7. Christoph Breunig & Peter Haan, 2018. "Nonparametric Regression with Selectively Missing Covariates," Papers 1810.00411, arXiv.org, revised Oct 2020.
    8. Breunig, Christoph & Kummer, Michael & Ohnemus, Jörg & Viete, Steffen, 2016. "IT outsourcing and firm productivity: Eliminating bias from selective missingness in the dependent variable," ZEW Discussion Papers 16-092, ZEW - Leibniz Centre for European Economic Research.
    9. Yujing Shao & Lei Wang, 2022. "Generalized partial linear models with nonignorable dropouts," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 223-252, February.
    10. Li, Mengyan & Ma, Yanyuan & Zhao, Jiwei, 2022. "Efficient estimation in a partially specified nonignorable propensity score model," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    11. Breunig, Christoph, 2017. "Testing Missing At Random Using Instrumental Variables," Rationality and Competition Discussion Paper Series 59, CRC TRR 190 Rationality and Competition.
    12. Lyu Ni & Jun Shao, 2023. "Estimation with multivariate outcomes having nonignorable item nonresponse," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 1-15, February.
    13. Wang, Lei & Zhao, Puying & Shao, Jun, 2021. "Dimension-reduced semiparametric estimation of distribution functions and quantiles with nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    14. Liu, Tianqing & Yuan, Xiaohui & Sun, Jianguo, 2021. "Weighted rank estimation for nonparametric transformation models with nonignorable missing data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    15. Puying Zhao & Hui Zhao & Niansheng Tang & Zhaohai Li, 2017. "Weighted composite quantile regression analysis for nonignorable missing data using nonresponse instrument," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 189-212, April.
    16. Zhong Guan & Jing Qin, 2017. "Empirical likelihood method for non-ignorable missing data problems," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 113-135, January.
    17. Bindele, Huybrechts F. & Nguelifack, Brice M., 2019. "Generalized signed-rank estimation for regression models with non-ignorable missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 14-33.
    18. Shonosuke Sugasawa & Kosuke Morikawa & Keisuke Takahata, 2022. "Bayesian semiparametric modeling of response mechanism for nonignorable missing data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 101-117, March.
    19. Pengfei Li & Jing Qin & Yukun Liu, 2023. "Instability of inverse probability weighting methods and a remedy for nonignorable missing data," Biometrics, The International Biometric Society, vol. 79(4), pages 3215-3226, December.
    20. Tianqing Liu & Xiaohui Yuan, 2020. "Doubly robust augmented-estimating-equations estimation with nonignorable nonresponse data," Statistical Papers, Springer, vol. 61(6), pages 2241-2270, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:165:y:2018:i:c:p:216-230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.