IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v155y2017icp200-216.html
   My bibliography  Save this article

Linear hypothesis testing in high-dimensional one-way MANOVA

Author

Listed:
  • Zhang, Jin-Ting
  • Guo, Jia
  • Zhou, Bu

Abstract

In recent years, with the rapid development of data collecting technologies, high-dimensional data have become increasingly prevalent. Much work has been done for testing hypotheses on mean vectors, especially for high-dimensional two-sample problems. Rather than considering a specific problem, we are interested in a general linear hypothesis testing (GLHT) problem on mean vectors of several populations, which includes many existing hypotheses about mean vectors as special cases. A few existing methodologies on this important GLHT problem impose strong assumptions on the underlying covariance matrix so that the null distributions of the associated test statistics are asymptotically normal. In this paper, we propose a simple and adaptive test based on the L2-norm for the GLHT problem. For normal data, we show that the null distribution of our test statistic is the same as that of a chi-squared type mixture which is generally skewed. Therefore, it may yield misleading results if we blindly approximate the underlying null distribution of our test statistic using a normal distribution. In fact, we show that the null distribution of our test statistic is asymptotically normal only when a necessary and sufficient condition on the underlying covariance matrix is satisfied. This condition, however, is not always satisfied and it is not an easy task to check if it is satisfied in practice. To overcome this difficulty, we propose to approximate the null distribution of our test statistic using the well-known Welch–Satterthwaite chi-squared approximation so that our new test is applicable without any assumption on the underlying covariance matrix. Simple ratio-consistent estimators of the unknown parameters are obtained. The asymptotic and approximate powers of our new test are also investigated. The methodologies are then extended for non-normal data. Four simulation studies and a real data application are presented to demonstrate the good performance of our new test compared with some existing testing procedures available in the literature.

Suggested Citation

  • Zhang, Jin-Ting & Guo, Jia & Zhou, Bu, 2017. "Linear hypothesis testing in high-dimensional one-way MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 200-216.
  • Handle: RePEc:eee:jmvana:v:155:y:2017:i:c:p:200-216
    DOI: 10.1016/j.jmva.2017.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X17300064
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2017.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Kai & Pang, Herbert & Tong, Tiejun & Genton, Marc G., 2016. "Shrinkage-based diagonal Hotelling’s tests for high-dimensional small sample size data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 127-142.
    2. Anestis Touloumis & Simon Tavaré & John C. Marioni, 2015. "Testing the mean matrix in high-dimensional transposable data," Biometrics, The International Biometric Society, vol. 71(1), pages 157-166, March.
    3. Mondal, Pronoy K. & Biswas, Munmun & Ghosh, Anil K., 2015. "On high dimensional two-sample tests based on nearest neighbors," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 168-178.
    4. Anil K. Ghosh & Munmun Biswas, 2016. "Distribution-free high-dimensional two-sample tests based on discriminating hyperplanes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 525-547, September.
    5. Ma, Yingying & Lan, Wei & Wang, Hansheng, 2015. "A high dimensional two-sample test under a low dimensional factor structure," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 162-170.
    6. Zhang, Jie & Pan, Meng, 2016. "A high-dimension two-sample test for the mean using cluster subspaces," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 87-97.
    7. Chen, Song Xi & Li, Jun & Zhong, Pingshou, 2014. "Two-Sample Tests for High Dimensional Means with Thresholding and Data Transformation," MPRA Paper 59815, University Library of Munich, Germany.
    8. Chen, Song Xi & Qin, Yingli, 2010. "A Two Sample Test for High Dimensional Data with Applications to Gene-set Testing," MPRA Paper 59642, University Library of Munich, Germany.
    9. T. Tony Cai & Weidong Liu & Yin Xia, 2014. "Two-sample test of high dimensional means under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 349-372, March.
    10. Karl Bruce Gregory & Raymond J. Carroll & Veerabhadran Baladandayuthapani & Soumendra N. Lahiri, 2015. "A Two-Sample Test for Equality of Means in High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 837-849, June.
    11. Feng, Long & Sun, Fasheng, 2015. "A note on high-dimensional two-sample test," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 29-36.
    12. Schott, James R., 2007. "Some high-dimensional tests for a one-way MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1825-1839, October.
    13. Srivastava, Muni S. & Fujikoshi, Yasunori, 2006. "Multivariate analysis of variance with fewer observations than the dimension," Journal of Multivariate Analysis, Elsevier, vol. 97(9), pages 1927-1940, October.
    14. Yamada, Takayuki & Himeno, Tetsuto, 2015. "Testing homogeneity of mean vectors under heteroscedasticity in high-dimension," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 7-27.
    15. Cai, T. Tony & Xia, Yin, 2014. "High-dimensional sparse MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 174-196.
    16. Jin-Ting Zhang, 2005. "Approximate and Asymptotic Distributions of Chi-Squared-Type Mixtures With Applications," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 273-285, March.
    17. Srivastava, Muni S. & Kubokawa, Tatsuya, 2013. "Tests for multivariate analysis of variance in high dimension under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 204-216.
    18. Seokho Lee & Johan Lim & Insuk Sohn & Sin-Ho Jung & Cheol-Keun Park, 2015. "Two sample test for high-dimensional partially paired data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(9), pages 1946-1961, September.
    19. Srivastava, Muni S. & Du, Meng, 2008. "A test for the mean vector with fewer observations than the dimension," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 386-402, March.
    20. Srivastava, Muni S. & Katayama, Shota & Kano, Yutaka, 2013. "A two sample test in high dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 349-358.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jin-Ting & Zhou, Bu & Guo, Jia, 2022. "Linear hypothesis testing in high-dimensional heteroscedastic one-way MANOVA: A normal reference L2-norm based test," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    2. Tianming Zhu & Jin-Ting Zhang, 2022. "Linear hypothesis testing in high-dimensional one-way MANOVA: a new normal reference approach," Computational Statistics, Springer, vol. 37(1), pages 1-27, March.
    3. Chakraborty, Nilanjan & Sakhanenko, Lyudmila, 2023. "Novel multiplier bootstrap tests for high-dimensional data with applications to MANOVA," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    4. Mingxiang Cao & Yuanjing He, 2022. "A high-dimensional test on linear hypothesis of means under a low-dimensional factor model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(5), pages 557-572, July.
    5. Jin-Ting Zhang & Bu Zhou & Jia Guo, 2022. "Testing high-dimensional mean vector with applications," Statistical Papers, Springer, vol. 63(4), pages 1105-1137, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harrar, Solomon W. & Kong, Xiaoli, 2022. "Recent developments in high-dimensional inference for multivariate data: Parametric, semiparametric and nonparametric approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Zhang, Jin-Ting & Zhou, Bu & Guo, Jia, 2022. "Linear hypothesis testing in high-dimensional heteroscedastic one-way MANOVA: A normal reference L2-norm based test," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    3. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    4. Jin-Ting Zhang & Bu Zhou & Jia Guo, 2022. "Testing high-dimensional mean vector with applications," Statistical Papers, Springer, vol. 63(4), pages 1105-1137, August.
    5. Jiang Hu & Zhidong Bai & Chen Wang & Wei Wang, 2017. "On testing the equality of high dimensional mean vectors with unequal covariance matrices," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 365-387, April.
    6. Huiqin Li & Jiang Hu & Zhidong Bai & Yanqing Yin & Kexin Zou, 2017. "Test on the linear combinations of mean vectors in high-dimensional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 188-208, March.
    7. Zhang, Jin-Ting & Zhu, Tianming, 2022. "A new normal reference test for linear hypothesis testing in high-dimensional heteroscedastic one-way MANOVA," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    8. Tianming Zhu & Jin-Ting Zhang, 2022. "Linear hypothesis testing in high-dimensional one-way MANOVA: a new normal reference approach," Computational Statistics, Springer, vol. 37(1), pages 1-27, March.
    9. Hyodo, Masashi & Watanabe, Hiroki & Seo, Takashi, 2018. "On simultaneous confidence interval estimation for the difference of paired mean vectors in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 160-173.
    10. Davy Paindaveine & Thomas Verdebout, 2013. "Universal Asymptotics for High-Dimensional Sign Tests," Working Papers ECARES ECARES 2013-40, ULB -- Universite Libre de Bruxelles.
    11. Zhao, Junguang & Xu, Xingzhong, 2016. "A generalized likelihood ratio test for normal mean when p is greater than n," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 91-104.
    12. Ley, Christophe & Paindaveine, Davy & Verdebout, Thomas, 2015. "High-dimensional tests for spherical location and spiked covariance," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 79-91.
    13. Cai, T. Tony & Xia, Yin, 2014. "High-dimensional sparse MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 174-196.
    14. Yuanyuan Jiang & Xingzhong Xu, 2022. "A Two-Sample Test of High Dimensional Means Based on Posterior Bayes Factor," Mathematics, MDPI, vol. 10(10), pages 1-23, May.
    15. Ghosh, Santu & Ayyala, Deepak Nag & Hellebuyck, Rafael, 2021. "Two-sample high dimensional mean test based on prepivots," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    16. Ayyala, Deepak Nag & Park, Junyong & Roy, Anindya, 2017. "Mean vector testing for high-dimensional dependent observations," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 136-155.
    17. Wang, Wei & Lin, Nan & Tang, Xiang, 2019. "Robust two-sample test of high-dimensional mean vectors under dependence," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 312-329.
    18. Zhang, Huaiyu & Wang, Haiyan, 2021. "A more powerful test of equality of high-dimensional two-sample means," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    19. Li, Yang & Wang, Zhaojun & Zou, Changliang, 2016. "A simpler spatial-sign-based two-sample test for high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 192-198.
    20. Tzviel Frostig & Yoav Benjamini, 2022. "Testing the equality of multivariate means when $$p>n$$ p > n by combining the Hotelling and Simes tests," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 390-415, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:155:y:2017:i:c:p:200-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.