IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v143y2016icp453-466.html
   My bibliography  Save this article

Bias-corrected estimation of stable tail dependence function

Author

Listed:
  • Beirlant, Jan
  • Escobar-Bach, Mikael
  • Goegebeur, Yuri
  • Guillou, Armelle

Abstract

We consider the estimation of the stable tail dependence function. We propose a bias-corrected estimator and we establish its asymptotic behaviour under suitable assumptions. The finite sample performance of the proposed estimator is evaluated by means of an extensive simulation study where a comparison with alternatives from the recent literature is provided.

Suggested Citation

  • Beirlant, Jan & Escobar-Bach, Mikael & Goegebeur, Yuri & Guillou, Armelle, 2016. "Bias-corrected estimation of stable tail dependence function," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 453-466.
  • Handle: RePEc:eee:jmvana:v:143:y:2016:i:c:p:453-466
    DOI: 10.1016/j.jmva.2015.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X15002572
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2015.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beirlant, J. & Dierckx, G. & Guillou, A., 2011. "Bias-reduced estimators for bivariate tail modelling," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 18-26, July.
    2. Drees, Holger & Huang, Xin, 1998. "Best Attainable Rates of Convergence for Estimators of the Stable Tail Dependence Function," Journal of Multivariate Analysis, Elsevier, vol. 64(1), pages 25-47, January.
    3. Yuri Goegebeur & Armelle Guillou, 2013. "Asymptotically Unbiased Estimation of the Coefficient of Tail Dependence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(1), pages 174-189, March.
    4. Anthony W. Ledford & Jonathan A. Tawn, 1997. "Modelling Dependence within Joint Tail Regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 475-499.
    5. Holger Drees, 1998. "On Smooth Statistical Tail Functionals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 25(1), pages 187-210, March.
    6. M. Ivette Gomes & Laurens De Haan & Lígia Henriques Rodrigues, 2008. "Tail index estimation for heavy‐tailed models: accommodation of bias in weighted log‐excesses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 31-52, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    2. Goix, Nicolas & Sabourin, Anne & Clémençon, Stephan, 2017. "Sparse representation of multivariate extremes with applications to anomaly detection," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 12-31.
    3. Mikael Escobar-Bach & Yuri Goegebeur & Armelle Guillou & Alexandre You, 2017. "Bias-corrected and robust estimation of the bivariate stable tail dependence function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 284-307, June.
    4. Falk, Michael & Padoan, Simone A. & Wisheckel, Florian, 2019. "Generalized Pareto copulas: A key to multivariate extremes," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    5. Cyril Bénézet & Emmanuel Gobet & Rodrigo Targino, 2021. "Transform MCMC schemes for sampling intractable factor copula models," Working Papers hal-03334526, HAL.
    6. Kiriliouk, Anna & Segers, Johan & Tafakori, Laleh, 2017. "An estimator of the stable tail dependence function based on the empirical beta copula," LIDAM Discussion Papers ISBA 2017028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Kiriliouk, Anna, 2020. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space," Econometrics and Statistics, Elsevier, vol. 16(C), pages 121-135.
    8. Kiriliouk, Anna & Segers, Johan & Tafakori, Laleh, 2018. "An estimator of the stable tail dependence function based on the empirical beta copula," LIDAM Discussion Papers ISBA 2018029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Hu, Shuang & Peng, Zuoxiang & Segers, Johan, 2022. "Modelling multivariate extreme value distributions via Markov trees," LIDAM Discussion Papers ISBA 2022021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Goegebeur, Yuri & Guillou, Armelle & Qin, Jing, 2017. "On kernel estimation of the second order rate parameter in multivariate extreme value statistics," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 35-43.
    11. Kiriliouk, Anna, 2017. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space with application to generalized max-linear models," LIDAM Discussion Papers ISBA 2017027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Cyril Bénézet & Emmanuel Gobet & Rodrigo Targino, 2023. "Transform MCMC schemes for sampling intractable factor copula models," Post-Print hal-03334526, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikael Escobar-Bach & Yuri Goegebeur & Armelle Guillou & Alexandre You, 2017. "Bias-corrected and robust estimation of the bivariate stable tail dependence function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 284-307, June.
    2. Di Bernardino, Elena & Maume-Deschamps, Véronique & Prieur, Clémentine, 2013. "Estimating a bivariate tail: A copula based approach," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 81-100.
    3. Christophe Dutang & Yuri Goegebeur & Armelle Guillou, 2016. "Robust and Bias-Corrected Estimation of the Probability of Extreme Failure Sets," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 52-86, February.
    4. Christophe Dutang & Yuri Goegebeur & Armelle Guillou, 2016. "Robust and bias-corrected estimation of the probability of extreme failure sets," Post-Print hal-01616187, HAL.
    5. Cai, J., 2012. "Estimation concerning risk under extreme value conditions," Other publications TiSEM a92b089f-bc4c-41c2-b297-c, Tilburg University, School of Economics and Management.
    6. Dierckx, Goedele & Goegebeur, Yuri & Guillou, Armelle, 2013. "An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 70-86.
    7. Goegebeur, Yuri & Guillou, Armelle & Ho, Nguyen Khanh Le & Qin, Jing, 2020. "Robust nonparametric estimation of the conditional tail dependence coefficient," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    8. Wager, Stefan, 2014. "Subsampling extremes: From block maxima to smooth tail estimation," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 335-353.
    9. Frederico Caeiro & M. Gomes, 2009. "Semi-parametric second-order reduced-bias high quantile estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(2), pages 392-413, August.
    10. Chavez-Demoulin, Valérie & Guillou, Armelle, 2018. "Extreme quantile estimation for β-mixing time series and applications," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 59-74.
    11. de Haan, Laurens & Neves, Cláudia & Peng, Liang, 2008. "Parametric tail copula estimation and model testing," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1260-1275, July.
    12. Tertius de Wet & Yuri Goegebeur & Armelle Guillou, 2012. "Weighted Moment Estimators for the Second Order Scale Parameter," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 753-783, September.
    13. Yuri Goegebeur & Armelle Guillou & Jing Qin, 2023. "Robust estimation of the conditional stable tail dependence function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(2), pages 201-231, April.
    14. Svetlana Litvinova & Mervyn J. Silvapulle, 2020. "Consistency of full-sample bootstrap for estimating high-quantile, tail probability, and tail index," Monash Econometrics and Business Statistics Working Papers 15/20, Monash University, Department of Econometrics and Business Statistics.
    15. Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.
    16. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    17. Ibrahim Ergen, 2014. "Tail dependence and diversification benefits in emerging market stocks: an extreme value theory approach," Applied Economics, Taylor & Francis Journals, vol. 46(19), pages 2215-2227, July.
    18. Falk, Michael & Reiss, Rolf-Dieter, 2003. "Efficient estimators and LAN in canonical bivariate POT models," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 190-207, January.
    19. Li, Feng & Kang, Yanfei, 2018. "Improving forecasting performance using covariate-dependent copula models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 456-476.
    20. Gissibl, Nadine & Klüppelberg, Claudia & Otto, Moritz, 2018. "Tail dependence of recursive max-linear models with regularly varying noise variables," Econometrics and Statistics, Elsevier, vol. 6(C), pages 149-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:143:y:2016:i:c:p:453-466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.