IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v131y2014icp79-98.html
   My bibliography  Save this article

Posterior analysis of rare variants in Gibbs-type species sampling models

Author

Listed:
  • Cesari, Oriana
  • Favaro, Stefano
  • Nipoti, Bernardo

Abstract

Species sampling problems have a long history in ecological and biological studies and a number of statistical issues, including the evaluation of species richness, are still to be addressed. In this paper, motivated by Bayesian nonparametric inference for species sampling problems, we consider the practically important and technically challenging issue of developing a comprehensive posterior analysis of the so-called rare variants, namely those species with frequency less than or equal to a given abundance threshold. In particular, by adopting a Gibbs-type prior, we provide an explicit expression for the posterior joint distribution of the frequency counts of the rare variants, and we investigate some of its statistical properties. The proposed results are illustrated by means of two novel applications to a benchmark genomic dataset.

Suggested Citation

  • Cesari, Oriana & Favaro, Stefano & Nipoti, Bernardo, 2014. "Posterior analysis of rare variants in Gibbs-type species sampling models," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 79-98.
  • Handle: RePEc:eee:jmvana:v:131:y:2014:i:c:p:79-98
    DOI: 10.1016/j.jmva.2014.06.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X1400147X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2014.06.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michele Guindani & Nuno Sepúlveda & Carlos Daniel Paulino & Peter Müller, 2014. "A Bayesian semiparametric approach for the differential analysis of sequence counts data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(3), pages 385-404, April.
    2. Hofert, Marius, 2011. "Efficiently sampling nested Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 57-70, January.
    3. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "A New Estimator of the Discovery Probability," Biometrics, The International Biometric Society, vol. 68(4), pages 1188-1196, December.
    4. Antonio Lijoi & Ramsés H. Mena & Igor Prünster, 2007. "Controlling the reinforcement in Bayesian non‐parametric mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 715-740, September.
    5. Stefano Favaro & Antonio Lijoi & Ramsés H. Mena & Igor Prünster, 2009. "Bayesian nonparametric inference for species variety with a two parameter Poisson-Dirichlet process prior," Carlo Alberto Notebooks 123, Collegio Carlo Alberto.
    6. Antonio Lijoi & Ramsés H. Mena & Igor Prünster, 2007. "A Bayesian Nonparametric Method for Prediction in EST Analysis," ICER Working Papers - Applied Mathematics Series 16-2007, ICER - International Centre for Economic Research.
    7. Antonio Lijoi & Igor Pruenster & Stephen G. Walker, 2008. "Bayesian nonparametric estimators derived from conditional Gibbs structures," ICER Working Papers - Applied Mathematics Series 06-2008, ICER - International Centre for Economic Research.
    8. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "A new estimator of the discovery probability," DEM Working Papers Series 007, University of Pavia, Department of Economics and Management.
    9. Stefano Favaro & Antonio Lijoi & Ramsés H. Mena & Igor Prünster, 2009. "Bayesian non‐parametric inference for species variety with a two‐parameter Poisson–Dirichlet process prior," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 993-1008, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julyan Arbel & Stefano Favaro, 2021. "Approximating Predictive Probabilities of Gibbs-Type Priors," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 496-519, February.
    2. Pierpaolo De Blasi & Stefano Favaro & Antonio Lijoi & Ramsés H. Mena & Igor Prünster & Mattteo Ruggiero, 2013. "Are Gibbs-type priors the most natural generalization of the Dirichlet process?," DEM Working Papers Series 054, University of Pavia, Department of Economics and Management.
    3. Antonio Canale & Igor Prünster, 2017. "Robustifying Bayesian nonparametric mixtures for count data," Biometrics, The International Biometric Society, vol. 73(1), pages 174-184, March.
    4. Emanuele Dolera, 2022. "Asymptotic Efficiency of Point Estimators in Bayesian Predictive Inference," Mathematics, MDPI, vol. 10(7), pages 1-27, April.
    5. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "A New Estimator of the Discovery Probability," Biometrics, The International Biometric Society, vol. 68(4), pages 1188-1196, December.
    6. Stefano Favaro & Shui Feng & Fuqing Gao, 2018. "Moderate Deviations for Ewens-Pitman Sampling Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 330-341, August.
    7. Stefano Favaro & Bernardo Nipoti, 2014. "Discussion of “On simulation and properties of the stable law” by L. Devroye and L. James," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(3), pages 365-369, August.
    8. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "A new estimator of the discovery probability," DEM Working Papers Series 007, University of Pavia, Department of Economics and Management.
    9. Stefano Favaro & Antonio Lijoi & Igor Prunster, 2011. "Asymptotics for a Bayesian nonparametric estimator of species richness," Quaderni di Dipartimento 144, University of Pavia, Department of Economics and Quantitative Methods.
    10. Giulia Cereda, 2017. "Impact of Model Choice on LR Assessment in Case of Rare Haplotype Match (Frequentist Approach)," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 230-248, March.
    11. repec:dau:papers:123456789/13437 is not listed on IDEAS
    12. Weixuan Zhu & Fabrizio Leisen, 2015. "A multivariate extension of a vector of two-parameter Poisson-Dirichlet processes," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(1), pages 89-105, March.
    13. Sonia Petrone & Stefano Rizzelli & Judith Rousseau & Catia Scricciolo, 2014. "Empirical Bayes methods in classical and Bayesian inference," METRON, Springer;Sapienza Università di Roma, vol. 72(2), pages 201-215, August.
    14. Stefano Favaro & Antonio Lijoi & Ramsés H. Mena & Igor Prünster, 2009. "Bayesian non‐parametric inference for species variety with a two‐parameter Poisson–Dirichlet process prior," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 993-1008, November.
    15. Lawless Caroline & Arbel Julyan, 2019. "A simple proof of Pitman–Yor’s Chinese restaurant process from its stick-breaking representation," Dependence Modeling, De Gruyter, vol. 7(1), pages 45-52, March.
    16. Emanuele Dolera & Stefano Favaro, 2021. "A Compound Poisson Perspective of Ewens–Pitman Sampling Model," Mathematics, MDPI, vol. 9(21), pages 1-12, November.
    17. Pierpaolo De Blasi & Ramsés H. Mena & Igor Prünster, 2022. "Asymptotic behavior of the number of distinct values in a sample from the geometric stick-breaking process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 143-165, February.
    18. Roberto Fontana, 2015. "Optimal design generation: an approach based on discovery probability," Computational Statistics, Springer, vol. 30(4), pages 1231-1244, December.
    19. Bedoui, Rihab & Braiek, Sana & Guesmi, Khaled & Chevallier, Julien, 2019. "On the conditional dependence structure between oil, gold and USD exchange rates: Nested copula based GJR-GARCH model," Energy Economics, Elsevier, vol. 80(C), pages 876-889.
    20. Kolossiatis, M. & Griffin, J.E. & Steel, M.F.J., 2011. "Modeling overdispersion with the normalized tempered stable distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2288-2301, July.
    21. Jörg Schwiebert, 2016. "Multinomial choice models based on Archimedean copulas," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 333-354, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:131:y:2014:i:c:p:79-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.