IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v40y2024i2p641-660.html
   My bibliography  Save this article

Hierarchical transfer learning with applications to electricity load forecasting

Author

Listed:
  • Antoniadis, Anestis
  • Gaucher, Solenne
  • Goude, Yannig

Abstract

The recent abundance of electricity consumption data available at different scales provides new opportunities and highlights the need for new techniques to leverage information present at finer scales in order to improve forecasts at wider scales. In this study, we take advantage of the similarity between this hierarchical prediction problem and transfer learning where source data are observed at a low aggregation level and target data at a global level. We develop two methods for hierarchical transfer learning based on stacking generalized additive models and random forests (GAM-RF). We also propose and compare adaptations of online aggregation of experts in a hierarchical context using quantile GAM-RF as experts. We apply these methods to two electricity load forecasting problems at the national scale by using smart meter data in the first case and regional data in the second case. For these two user cases, we compared the performance of our methods and benchmark algorithms, and investigated their behavior using variable importance analysis. Our results demonstrate that both methods can lead to significantly improved predictions.

Suggested Citation

  • Antoniadis, Anestis & Gaucher, Solenne & Goude, Yannig, 2024. "Hierarchical transfer learning with applications to electricity load forecasting," International Journal of Forecasting, Elsevier, vol. 40(2), pages 641-660.
  • Handle: RePEc:eee:intfor:v:40:y:2024:i:2:p:641-660
    DOI: 10.1016/j.ijforecast.2023.04.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207023000420
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2023.04.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:40:y:2024:i:2:p:641-660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.