IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v82y2018icp21-36.html
   My bibliography  Save this article

Non-parametric inference of transition probabilities based on Aalen–Johansen integral estimators for acyclic multi-state models: application to LTC insurance

Author

Listed:
  • Guibert, Quentin
  • Planchet, Frédéric

Abstract

Studying Long Term Care (LTC) insurance requires modeling the lifetime of individuals in presence of both terminal and non-terminal events which are concurrent. Although a non-homogeneous semi-Markov multi-state model is probably the best candidate for this purpose, most of the current researches assume, maybe abusively, that the Markov assumption is satisfied when fitting the model. In this context, using the Aalen–Johansen estimators for transition probabilities can induce bias, which can be important when the Markov assumption is strongly unstated. Based on some recent studies developing non-Markov estimators in the illness–death model that we can easily extend to a more general acyclic multi-state model, we exhibit three non-parametric estimators of transition probabilities of paying cash-flows, which are of interest when pricing or reserving LTC guarantees in discrete time. As our method directly estimates these quantities instead of transition intensities, it is possible to derive asymptotic results for these probabilities under non-dependent random right-censorship, obtained by re-setting the system with two competing risk blocks. Inclusion of left-truncation is also considered. We conduct simulations to compare the performance of our transition probabilities estimators without the Markov assumption. Finally, we propose a numerical application with LTC insurance data, which is traditionally analyzed with a semi-Markov model.

Suggested Citation

  • Guibert, Quentin & Planchet, Frédéric, 2018. "Non-parametric inference of transition probabilities based on Aalen–Johansen integral estimators for acyclic multi-state models: application to LTC insurance," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 21-36.
  • Handle: RePEc:eee:insuma:v:82:y:2018:i:c:p:21-36
    DOI: 10.1016/j.insmatheco.2018.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668716305297
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2018.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. César Sánchez Sellero & Wenceslao González Manteiga & Ingrid Van Keilegom, 2005. "Uniform Representation of Product‐Limit Integrals with Applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(4), pages 563-581, December.
    2. Cheng, Yu & Fine, Jason P. & Kosorok, Michael R., 2007. "Nonparametric Association Analysis of Bivariate Competing-Risks Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1407-1415, December.
    3. Plisson, Manuel, 2009. "Assurabilité et développement de l'assurance dépendance," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/5064 edited by Lorenzi, Jean-Hervé.
    4. Rotolo, Federico & Legrand, Catherine & Van Keilegom, Ingrid, 2013. "A simulation procedure based on copulas to generate clustered multi-state survival data," LIDAM Reprints ISBA 2013021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. L. Peng & J. P. Fine, 2006. "Nonparametric estimation with left-truncated semicompeting risks data," Biometrika, Biometrika Trust, vol. 93(2), pages 367-383, June.
    6. Joelle H. Fong & Adam W. Shao & Michael Sherris, 2015. "Multistate Actuarial Models of Functional Disability," North American Actuarial Journal, Taylor & Francis Journals, vol. 19(1), pages 41-59, January.
    7. repec:dau:papers:123456789/3478 is not listed on IDEAS
    8. Tomas, Julien & Planchet, Frédéric, 2013. "Multidimensional smoothing by adaptive local kernel-weighted log-likelihood: Application to long-term care insurance," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 573-589.
    9. Andrew C. Titman, 2015. "Transition probability estimates for non-Markov multi-state models," Biometrics, The International Biometric Society, vol. 71(4), pages 1034-1041, December.
    10. Luís Meira-Machado & Jacobo Uña-Álvarez & Somnath Datta, 2015. "Nonparametric estimation of conditional transition probabilities in a non-Markov illness-death model," Computational Statistics, Springer, vol. 30(2), pages 377-397, June.
    11. Per Kragh Andersen, 2003. "Generalised linear models for correlated pseudo-observations, with applications to multi-state models," Biometrika, Biometrika Trust, vol. 90(1), pages 15-27, March.
    12. de Wreede, Liesbeth C. & Fiocco, Marta & Putter, Hein, 2011. "mstate: An R Package for the Analysis of Competing Risks and Multi-State Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 38(i07).
    13. Marcus Christiansen, 2012. "Multistate models in health insurance," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(2), pages 155-186, June.
    14. Jacobo de Uña-Álvarez & Luís Meira-Machado, 2015. "Nonparametric estimation of transition probabilities in the non-Markov illness-death model: A comparative study," Biometrics, The International Biometric Society, vol. 71(2), pages 364-375, June.
    15. Fuino, Michel & Wagner, Joël, 2018. "Long-term care models and dependence probability tables by acuity level: New empirical evidence from Switzerland," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 51-70.
    16. Helms, Florian & Czado, Claudia & Gschlößl, Susanne, 2005. "Calculation of LTC Premiums Based on Direct Estimates of Transition Probabilities," ASTIN Bulletin, Cambridge University Press, vol. 35(2), pages 455-469, November.
    17. repec:cai:popine:popu_p1999_54n2_0222 is not listed on IDEAS
    18. Czado, Claudia & Rudolph, Florian, 2002. "Application of survival analysis methods to long-term care insurance," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 395-413, December.
    19. D. J. Pritchard, 2006. "Modeling Disability in Long-Term Care Insurance," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(4), pages 48-75.
    20. Levantesi, Susanna & Menzietti, Massimiliano, 2012. "Managing longevity and disability risks in life annuities with long term care," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 391-401.
    21. Król, Agnieszka & Saint-Pierre, Philippe, 2015. "SemiMarkov: An R Package for Parametric Estimation in Multi-State Semi-Markov Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(i06).
    22. Marie-Pascale Deléglise & Christian Hess & Sébastien Nouet, 2009. "Tarification, Provisionnement Et Pilotage D'Un Portefeuille Dépendance," Post-Print halshs-00653427, HAL.
    23. Jan Beyersmann & Susanna Di Termini & Markus Pauly, 2013. "Weak Convergence of the Wild Bootstrap for the Aalen–Johansen Estimator of the Cumulative Incidence Function of a Competing Risk," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 387-402, September.
    24. Lando, David & Skodeberg, Torben M., 2002. "Analyzing rating transitions and rating drift with continuous observations," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 423-444, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christiansen, Marcus C. & Furrer, Christian, 2022. "Extension of as-if-Markov modeling to scaled payments," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 288-306.
    2. Michel Fuino & Andrey Ugarte Montero & Joël Wagner, 2022. "On the drivers of potential customers' interest in long‐term care insurance: Evidence from Switzerland," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 25(3), pages 271-302, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuino, Michel & Wagner, Joël, 2018. "Long-term care models and dependence probability tables by acuity level: New empirical evidence from Switzerland," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 51-70.
    2. William Lim & Gaurav Khemka & David Pitt & Bridget Browne, 2019. "A method for calculating the implied no-recovery three-state transition matrix using observable population mortality incidence and disability prevalence rates among the elderly," Journal of Population Research, Springer, vol. 36(3), pages 245-282, September.
    3. Manuel L. Esquível & Gracinda R. Guerreiro & Matilde C. Oliveira & Pedro Corte Real, 2021. "Calibration of Transition Intensities for a Multistate Model: Application to Long-Term Care," Risks, MDPI, vol. 9(2), pages 1-17, February.
    4. Niklas Maltzahn & Rune Hoff & Odd O. Aalen & Ingrid S. Mehlum & Hein Putter & Jon Michael Gran, 2021. "A hybrid landmark Aalen-Johansen estimator for transition probabilities in partially non-Markov multi-state models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 737-760, October.
    5. Martin Eling & Omid Ghavibazoo, 2019. "Research on long-term care insurance: status quo and directions for future research," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 44(2), pages 303-356, April.
    6. Jacobo de Uña‐Álvarez & Micha Mandel, 2018. "Nonparametric estimation of transition probabilities for a general progressive multi‐state model under cross‐sectional sampling," Biometrics, The International Biometric Society, vol. 74(4), pages 1203-1212, December.
    7. Tomas, Julien & Planchet, Frédéric, 2013. "Multidimensional smoothing by adaptive local kernel-weighted log-likelihood: Application to long-term care insurance," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 573-589.
    8. Boumezoued, Alexandre & Karoui, Nicole El & Loisel, Stéphane, 2017. "Measuring mortality heterogeneity with multi-state models and interval-censored data," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 67-82.
    9. Giorgos Bakoyannis & Dipankar Bandyopadhyay, 2022. "Nonparametric tests for multistate processes with clustered data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 837-867, October.
    10. Qiqi Wang & Katja Hanewald & Xiaojun Wang, 2022. "Multistate health transition modeling using neural networks," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(2), pages 475-504, June.
    11. Franca Glenzer & Bertrand Achou, 2019. "Annuities, long-term care insurance, and insurer solvency," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 44(2), pages 252-276, April.
    12. Gustavo Soutinho & Luís Meira-Machado, 2022. "Methods for checking the Markov condition in multi-state survival data," Computational Statistics, Springer, vol. 37(2), pages 751-780, April.
    13. Rune Hoff & Hein Putter & Ingrid Sivesind Mehlum & Jon Michael Gran, 2019. "Landmark estimation of transition probabilities in non-Markov multi-state models with covariates," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 660-680, October.
    14. Baione, Fabio & Levantesi, Susanna, 2014. "A health insurance pricing model based on prevalence rates: Application to critical illness insurance," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 174-184.
    15. Gustavo Soutinho & Luís Meira-Machado, 2023. "Nonparametric estimation of the distribution of gap times for recurrent events," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 103-128, March.
    16. Annalisa Orenti & Patrizia Boracchi & Giuseppe Marano & Elia Biganzoli & Federico Ambrogi, 2022. "A pseudo-values regression model for non-fatal event free survival in the presence of semi-competing risks," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 709-727, September.
    17. Ritesh Ramchandani & Dianne M. Finkelstein & David A. Schoenfeld, 2020. "Estimation for an accelerated failure time model with intermediate states as auxiliary information," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 1-20, January.
    18. Fuino, Michel & Wagner, Joël, 2020. "Duration of long-term care: Socio-economic factors, type of care interactions and evolution," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 151-168.
    19. Jan Beyersmann & Hein Putter, 2014. "A note on computing average state occupation times," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(62), pages 1681-1696.
    20. Dennis Dobler & Andrew Titman, 2020. "Dynamic inference for non‐Markov transition probabilities under random right censoring," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 572-586, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:82:y:2018:i:c:p:21-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.