IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v68y2016icp134-140.html
   My bibliography  Save this article

Varying transition rules in bonus–malus systems: From rules specification to determination of optimal relativities

Author

Listed:
  • Tan, Chong It

Abstract

In this paper, we extend the proposed idea of level-varying transition rules in bonus–malus systems onto risk-varying rules and combine both these ideas to formulate the generalization of varying transition rules. Moreover, we generalize the analytical formulae for the determination of optimal relativities under these rules. We find that the risk-varying transition rules are the most effective among the different specifications of transition rules. Our numerical results also indicate that the resulting optimal relativities under the general-varying rules are higher than those of under the risk-varying rules partly due to the differences of the transitions imposed by the rules.

Suggested Citation

  • Tan, Chong It, 2016. "Varying transition rules in bonus–malus systems: From rules specification to determination of optimal relativities," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 134-140.
  • Handle: RePEc:eee:insuma:v:68:y:2016:i:c:p:134-140
    DOI: 10.1016/j.insmatheco.2016.03.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668715301815
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2016.03.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dionne, Georges & Vanasse, Charles, 1989. "A Generalization of Automobile Insurance Rating Models: The Negative Binomial Distribution with a Regression Component," ASTIN Bulletin, Cambridge University Press, vol. 19(2), pages 199-212, November.
    2. Tzougas, George & Vrontos, Spyridon & Frangos, Nicholas, 2014. "Optimal Bonus-Malus Systems Using Finite Mixture Models," ASTIN Bulletin, Cambridge University Press, vol. 44(2), pages 417-444, May.
    3. Coene, Geert & Doray, Louis G., 1996. "A financially Balanced Bonus/Malus System," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 107-116, May.
    4. Pinquet, Jean & Guillén, Montserrat & Bolancé, Catalina, 2001. "Allowance for the Age of Claims in Bonus-Malus Systems," ASTIN Bulletin, Cambridge University Press, vol. 31(2), pages 337-348, November.
    5. Boucher, Jean-Philippe & Inoussa, Rofick, 2014. "A Posteriori Ratemaking With Panel Data," ASTIN Bulletin, Cambridge University Press, vol. 44(3), pages 587-612, September.
    6. de Jong,Piet & Heller,Gillian Z., 2008. "Generalized Linear Models for Insurance Data," Cambridge Books, Cambridge University Press, number 9780521879149.
    7. Taylor, Greg, 1997. "Setting a Bonus-Malus Scale in the Presence of other Rating Factors," ASTIN Bulletin, Cambridge University Press, vol. 27(2), pages 319-327, November.
    8. Tzougas, George & Vrontos, Spyridon & Frangos, Nicholas, 2014. "Optimal Bonus-Malus Systems using finite mixture models," LSE Research Online Documents on Economics 70919, London School of Economics and Political Science, LSE Library.
    9. Jean-Philippe Boucher & Michel Denuit & Montserrat Guillén, 2007. "Risk Classification for Claim Counts," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(4), pages 110-131.
    10. Tan, Chong It & Li, Jackie & Li, Johnny Siu-Hang & Balasooriya, Uditha, 2015. "Optimal relativities and transition rules of a bonus–malus system," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 255-263.
    11. Bolance, Catalina & Guillen, Montserrat & Pinquet, Jean, 2003. "Time-varying credibility for frequency risk models: estimation and tests for autoregressive specifications on the random effects," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 273-282, October.
    12. Yip, Karen C.H. & Yau, Kelvin K.W., 2005. "On modeling claim frequency data in general insurance with extra zeros," Insurance: Mathematics and Economics, Elsevier, vol. 36(2), pages 153-163, April.
    13. Natacha Brouhns & Montserrat Guillén & Michel Denuit & Jean Pinquet, 2003. "Bonus‐Malus Scales in Segmented Tariffs With Stochastic Migration Between Segments," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 70(4), pages 577-599, December.
    14. Frangos, Nicholas E. & Vrontos, Spyridon D., 2001. "Design of Optimal Bonus-Malus Systems With a Frequency and a Severity Component On an Individual Basis in Automobile Insurance," ASTIN Bulletin, Cambridge University Press, vol. 31(1), pages 1-22, May.
    15. Pitrebois, Sandra & Denuit, Michel & Walhin, Jean-François, 2003. "Setting a Bonus-Malus Scale in the Presence of Other Rating Factors: Taylor's Work Revisited," ASTIN Bulletin, Cambridge University Press, vol. 33(2), pages 419-436, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenhui Zhang & Yongmin Su & Ruimin Ke & Xinqiang Chen, 2018. "Evaluating the influential priority of the factors on insurance loss of public transit," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-11, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tzougas, George & Hoon, W. L. & Lim, J. M., 2019. "The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking," LSE Research Online Documents on Economics 101728, London School of Economics and Political Science, LSE Library.
    2. George Tzougas, 2020. "EM Estimation for the Poisson-Inverse Gamma Regression Model with Varying Dispersion: An Application to Insurance Ratemaking," Risks, MDPI, vol. 8(3), pages 1-23, September.
    3. Tzougas, George, 2020. "EM estimation for the Poisson-Inverse Gamma regression model with varying dispersion: an application to insurance ratemaking," LSE Research Online Documents on Economics 106539, London School of Economics and Political Science, LSE Library.
    4. Tan, Chong It & Li, Jackie & Li, Johnny Siu-Hang & Balasooriya, Uditha, 2015. "Optimal relativities and transition rules of a bonus–malus system," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 255-263.
    5. Oh, Rosy & Lee, Kyung Suk & Park, Sojung C. & Ahn, Jae Youn, 2020. "Double-counting problem of the bonus–malus system," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 141-155.
    6. Martinek, László & Arató, N. Miklós, 2019. "An approach to merit rating by means of autoregressive sequences," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 205-217.
    7. Yang Lu, 2019. "Flexible (panel) regression models for bivariate count–continuous data with an insurance application," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1503-1521, October.
    8. Tzougas, George & Yik, Woo Hee & Mustaqeem, Muhammad Waqar, 2019. "Insurance ratemaking using the Exponential-Lognormal regression model," LSE Research Online Documents on Economics 101729, London School of Economics and Political Science, LSE Library.
    9. Tzougas, George & Karlis, Dimitris & Frangos, Nicholas, 2017. "Confidence intervals of the premiums of optimal Bonus Malus Systems," LSE Research Online Documents on Economics 70926, London School of Economics and Political Science, LSE Library.
    10. Olena Ragulina, 2017. "Bonus--malus systems with different claim types and varying deductibles," Papers 1707.00917, arXiv.org.
    11. Tzougas, George & Vrontos, Spyridon & Frangos, Nicholas, 2018. "Bonus-Malus systems with two component mixture models arising from different parametric families," LSE Research Online Documents on Economics 84301, London School of Economics and Political Science, LSE Library.
    12. Payandeh Najafabadi Amir T. & MohammadPour Saeed, 2018. "A k-Inflated Negative Binomial Mixture Regression Model: Application to Rate–Making Systems," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 12(2), pages 1-31, July.
    13. Lluís Bermúdez & Dimitris Karlis & Isabel Morillo, 2020. "Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models," Risks, MDPI, vol. 8(1), pages 1-13, January.
    14. Yang Lu, 2018. "Dynamic Frailty Count Process in Insurance: A Unified Framework for Estimation, Pricing, and Forecasting," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 85(4), pages 1083-1102, December.
    15. Mihaela Covrig & Iulian Mircea & Gheorghita Zbaganu & Alexandru Coser & Alexandru Tindeche, 2015. "Using R In Generalized Linear Models," Romanian Statistical Review, Romanian Statistical Review, vol. 63(3), pages 33-45, September.
    16. Zhao, Xiaobing & Zhou, Xian, 2012. "Copula models for insurance claim numbers with excess zeros and time-dependence," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 191-199.
    17. Mahmoudvand Rahim & Tan Chong It & Abbasi Narges, 2017. "Adjusting the Premium Relativities in a Bonus-Malus System: An Integrated Approach Using the First Claim Time and the Number of Claims," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 11(2), pages 1-19, July.
    18. Lee, Woojoo & Kim, Jeonghwan & Ahn, Jae Youn, 2020. "The Poisson random effect model for experience ratemaking: Limitations and alternative solutions," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 26-36.
    19. Mihaela COVRIG & Dumitru BADEA, 2017. "Some Generalized Linear Models for the Estimation of the Mean Frequency of Claims in Motor Insurance," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(4), pages 91-107.
    20. Emilio Gómez-Déniz & Enrique Calderín-Ojeda, 2018. "Multivariate Credibility in Bonus-Malus Systems Distinguishing between Different Types of Claims," Risks, MDPI, vol. 6(2), pages 1-11, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:68:y:2016:i:c:p:134-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.