IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v11y2017i2p407-422.html
   My bibliography  Save this article

The impact of collaboration and knowledge networks on citations

Author

Listed:
  • Guan, Jiancheng
  • Yan, Yan
  • Zhang, Jing Jing

Abstract

Research papers not only involve author collaboration networks but also relate to knowledge networks. Previous research claims that a paper’s citations are related to the node attributes of its authors in collaboration networks. We further propose that a paper’s citations can also be affected by the node attributes of its knowledge elements in knowledge networks. In this study, we develop a new method to construct the knowledge network using article keywords. Further, we explore the antecedents of paper citations from both the collaboration and knowledge network perspectives. Using wind energy paper data (16,351 records) collected from WoS (Web of Science) and JCR (Journal Citation Reports) database, we construct two distinct networks and empirically examine the hypotheses of the relationships between node attributes of two networks and the paper’s citations, which fill the gap in prior studies and will inspire related studies. We have the following key findings: in the collaboration network, the structural holes of authors have positive but non-significant effects on the paper’s citations, while the authors’ centrality has inverted U effects on the paper’s citations; in the knowledge network, the structural holes of knowledge elements are positively related to the paper’s citations, and the knowledge elements centrality has an inverted U relationship with the paper’s citations.

Suggested Citation

  • Guan, Jiancheng & Yan, Yan & Zhang, Jing Jing, 2017. "The impact of collaboration and knowledge networks on citations," Journal of Informetrics, Elsevier, vol. 11(2), pages 407-422.
  • Handle: RePEc:eee:infome:v:11:y:2017:i:2:p:407-422
    DOI: 10.1016/j.joi.2017.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157716301444
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2017.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guan, Jiancheng & Liu, Na, 2016. "Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy," Research Policy, Elsevier, vol. 45(1), pages 97-112.
    2. Abbasi, Alireza & Hossain, Liaquat & Leydesdorff, Loet, 2012. "Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks," Journal of Informetrics, Elsevier, vol. 6(3), pages 403-412.
    3. Wang, Jian, 2016. "Knowledge creation in collaboration networks: Effects of tie configuration," Research Policy, Elsevier, vol. 45(1), pages 68-80.
    4. Loet Leydesdorff & Tobias Opthof, 2010. "Scopus's source normalized impact per paper (SNIP) versus a journal impact factor based on fractional counting of citations," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(11), pages 2365-2369, November.
    5. S. Redner, 1998. "How popular is your paper? An empirical study of the citation distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 4(2), pages 131-134, July.
    6. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    7. Gautam Ahuja, 2000. "The duality of collaboration: inducements and opportunities in the formation of interfirm linkages," Strategic Management Journal, Wiley Blackwell, vol. 21(3), pages 317-343, March.
    8. Corey C. Phelps & Ralph Heidl & Anu Wadhwa, 2012. "Networks, knowledge, and knowledge networks: A critical review and research agenda," Post-Print hal-00715591, HAL.
    9. Simon Rodan & Charles Galunic, 2004. "More than network structure: how knowledge heterogeneity influences managerial performance and innovativeness," Strategic Management Journal, Wiley Blackwell, vol. 25(6), pages 541-562, June.
    10. Jue Wang & Philip Shapira, 2011. "Funding acknowledgement analysis: an enhanced tool to investigate research sponsorship impacts: the case of nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(3), pages 563-586, June.
    11. Tijssen, Robert J. W., 1992. "A quantitative assessment of interdisciplinary structures in science and technology: Co-classification analysis of energy research," Research Policy, Elsevier, vol. 21(1), pages 27-44, February.
    12. George A. Lozano & Vincent Larivière & Yves Gingras, 2012. "The weakening relationship between the impact factor and papers' citations in the digital age," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(11), pages 2140-2145, November.
    13. Pablo D. Batista & Mônica G. Campiteli & Osame Kinouchi, 2006. "Is it possible to compare researchers with different scientific interests?," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(1), pages 179-189, July.
    14. Didegah, Fereshteh & Thelwall, Mike, 2013. "Which factors help authors produce the highest impact research? Collaboration, journal and document properties," Journal of Informetrics, Elsevier, vol. 7(4), pages 861-873.
    15. Elias Sanz-Casado & J. Carlos Garcia-Zorita & Antonio Eleazar Serrano-López & Birger Larsen & Peter Ingwersen, 2013. "Renewable energy research 1995–2009: a case study of wind power research in EU, Spain, Germany and Denmark," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 197-224, April.
    16. Eric von Hippel, 1994. ""Sticky Information" and the Locus of Problem Solving: Implications for Innovation," Management Science, INFORMS, vol. 40(4), pages 429-439, April.
    17. Cobo, M.J. & López-Herrera, A.G. & Herrera-Viedma, E. & Herrera, F., 2011. "An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field," Journal of Informetrics, Elsevier, vol. 5(1), pages 146-166.
    18. Jiancheng Guan & Yan Yan & Jingjing Zhang, 2015. "How do collaborative features affect scientific output? Evidences from wind power field," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 333-355, January.
    19. Shimelis G. Assefa & Abebe Rorissa, 2013. "A bibliometric mapping of the structure of STEM education using co‐word analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(12), pages 2513-2536, December.
    20. Guan, Jiancheng & Zhang, Jingjing & Yan, Yan, 2015. "The impact of multilevel networks on innovation," Research Policy, Elsevier, vol. 44(3), pages 545-559.
    21. Abbasi, Alireza & Altmann, Jörn & Hossain, Liaquat, 2011. "Identifying the effects of co-authorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures," Journal of Informetrics, Elsevier, vol. 5(4), pages 594-607.
    22. Srikanth Paruchuri, 2010. "Intraorganizational Networks, Interorganizational Networks, and the Impact of Central Inventors: A Longitudinal Study of Pharmaceutical Firms," Organization Science, INFORMS, vol. 21(1), pages 63-80, February.
    23. Shimelis G. Assefa & Abebe Rorissa, 2013. "A bibliometric mapping of the structure of STEM education using co-word analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(12), pages 2513-2536, December.
    24. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    25. Loet Leydesdorff & Lutz Bornmann, 2011. "Integrated impact indicators compared with impact factors: An alternative research design with policy implications," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(11), pages 2133-2146, November.
    26. Guan, JianCheng & Zuo, KaiRui & Chen, KaiHua & Yam, Richard C.M., 2016. "Does country-level R&D efficiency benefit from the collaboration network structure?," Research Policy, Elsevier, vol. 45(4), pages 770-784.
    27. Stephen J. Bensman, 2008. "Distributional differences of the impact factor in the sciences versus the social sciences: An analysis of the probabilistic structure of the 2005 journal citation reports," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(9), pages 1366-1382, July.
    28. Anthony F. J. Raan, 2006. "Comparison of the Hirsch-index with standard bibliometric indicators and with peer judgment for 147 chemistry research groups," Scientometrics, Springer;Akadémiai Kiadó, vol. 67(3), pages 491-502, June.
    29. Hsin-Ning Su & Pei-Chun Lee, 2010. "Mapping knowledge structure by keyword co-occurrence: a first look at journal papers in Technology Foresight," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 65-79, October.
    30. Melissa A. Schilling & Corey C. Phelps, 2007. "Interfirm Collaboration Networks: The Impact of Large-Scale Network Structure on Firm Innovation," Management Science, INFORMS, vol. 53(7), pages 1113-1126, July.
    31. Owens, Susan & Driffill, Louise, 2008. "How to change attitudes and behaviours in the context of energy," Energy Policy, Elsevier, vol. 36(12), pages 4412-4418, December.
    32. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    33. Paul F. Skilton, 2006. "A comparative study of communal practice: Assessing the effects of taken-for-granted-ness on citation practice in scientific communities," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(1), pages 73-96, July.
    34. Tim Rowley & Dean Behrens & David Krackhardt, 2000. "Redundant governance structures: an analysis of structural and relational embeddedness in the steel and semiconductor industries," Strategic Management Journal, Wiley Blackwell, vol. 21(3), pages 369-386, March.
    35. Letchford, Adrian & Preis, Tobias & Moat, Helen Susannah, 2016. "The advantage of simple paper abstracts," Journal of Informetrics, Elsevier, vol. 10(1), pages 1-8.
    36. Guan, Jian Cheng & Yan, Yan, 2016. "Technological proximity and recombinative innovation in the alternative energy field," Research Policy, Elsevier, vol. 45(7), pages 1460-1473.
    37. Li, Eldon Y. & Liao, Chien Hsiang & Yen, Hsiuju Rebecca, 2013. "Co-authorship networks and research impact: A social capital perspective," Research Policy, Elsevier, vol. 42(9), pages 1515-1530.
    38. Manju K. Ahuja & Dennis F. Galletta & Kathleen M. Carley, 2003. "Individual Centrality and Performance in Virtual R& D Groups: An Empirical Study," Management Science, INFORMS, vol. 49(1), pages 21-38, January.
    39. Abbasi, Alireza & Jaafari, Ali, 2013. "Research impact and scholars’ geographical diversity," Journal of Informetrics, Elsevier, vol. 7(3), pages 683-692.
    40. Loet Leydesdorff & Stephen Carley & Ismael Rafols, 2013. "Global maps of science based on the new Web-of-Science categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(2), pages 589-593, February.
    41. Yang, Siluo & Han, Ruizhen & Wolfram, Dietmar & Zhao, Yuehua, 2016. "Visualizing the intellectual structure of information science (2006–2015): Introducing author keyword coupling analysis," Journal of Informetrics, Elsevier, vol. 10(1), pages 132-150.
    42. Li, Guan-Cheng & Lai, Ronald & D’Amour, Alexander & Doolin, David M. & Sun, Ye & Torvik, Vetle I. & Yu, Amy Z. & Fleming, Lee, 2014. "Disambiguation and co-authorship networks of the U.S. patent inventor database (1975–2010)," Research Policy, Elsevier, vol. 43(6), pages 941-955.
    43. Shaodong Xie & Jing Zhang & Yuh-Shan Ho, 2008. "Assessment of world aerosol research trends by bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 77(1), pages 113-130, October.
    44. Thelwall, Mike & Wilson, Paul, 2014. "Regression for citation data: An evaluation of different methods," Journal of Informetrics, Elsevier, vol. 8(4), pages 963-971.
    45. Annamária Inzelt & András Schubert & Mihály Schubert, 2009. "Incremental citation impact due to international co-authorship in Hungarian higher education institutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 78(1), pages 37-43, January.
    46. Jingjing Zhang & Yan Yan & Jiancheng Guan, 2015. "Scientific relatedness in solar energy: a comparative study between the USA and China," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1595-1613, February.
    47. Maryam Alavi & Amrit Tiwana, 2002. "Knowledge integration in virtual teams: The potential role of KMS," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 53(12), pages 1029-1037, October.
    48. Rousseau, Ronald & García-Zorita, Carlos & Sanz-Casado, Elias, 2013. "The h-bubble," Journal of Informetrics, Elsevier, vol. 7(2), pages 294-300.
    49. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    50. Ajiferuke, Isola & Famoye, Felix, 2015. "Modelling count response variables in informetric studies: Comparison among count, linear, and lognormal regression models," Journal of Informetrics, Elsevier, vol. 9(3), pages 499-513.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Yan & Shanwu Tian & Jingjing Zhang, 2020. "The impact of a paper’s new combinations and new components on its citation," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 895-913, February.
    2. Shanwu Tian & Xiurui Xu & Ping Li, 2021. "Acknowledgement network and citation count: the moderating role of collaboration network," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7837-7857, September.
    3. Yan Yan & Jiancheng Guan, 2018. "How multiple networks help in creating knowledge: evidence from alternative energy patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 51-77, April.
    4. JingJing Zhang & Jiancheng Guan, 2017. "Scientific relatedness and intellectual base: a citation analysis of un-cited and highly-cited papers in the solar energy field," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 141-162, January.
    5. Yue Wang & Ning Li & Bin Zhang & Qian Huang & Jian Wu & Yang Wang, 2023. "The effect of structural holes on producing novel and disruptive research in physics," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1801-1823, March.
    6. Marian-Gabriel Hâncean & Matjaž Perc & Jürgen Lerner, 2021. "The coauthorship networks of the most productive European researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 201-224, January.
    7. Jiancheng Guan & Lanxin Pang, 2018. "Bidirectional relationship between network position and knowledge creation in Scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 201-222, April.
    8. Jiancheng Guan & Yan Yan & Jingjing Zhang, 2015. "How do collaborative features affect scientific output? Evidences from wind power field," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 333-355, January.
    9. Zhang, JingJing & Yan, Yan & Guan, JianCheng, 2019. "Recombinant distance, network governance and recombinant innovation," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 260-272.
    10. Graf, Holger & Kalthaus, Martin, 2018. "International research networks: Determinants of country embeddedness," Research Policy, Elsevier, vol. 47(7), pages 1198-1214.
    11. Stefano Scarazzati & Lili Wang, 2019. "The effect of collaborations on scientific research output: the case of nanoscience in Chinese regions," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 839-868, November.
    12. Yan, Yan & Guan, JianCheng, 2018. "Social capital, exploitative and exploratory innovations: The mediating roles of ego-network dynamics," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 244-258.
    13. Guan, JianCheng & Zuo, KaiRui & Chen, KaiHua & Yam, Richard C.M., 2016. "Does country-level R&D efficiency benefit from the collaboration network structure?," Research Policy, Elsevier, vol. 45(4), pages 770-784.
    14. Wen, Jinyan & Qualls, William J. & Zeng, Deming, 2021. "To explore or exploit: The influence of inter-firm R&D network diversity and structural holes on innovation outcomes," Technovation, Elsevier, vol. 100(C).
    15. Yao, Li & Li, Jun & Li, Jian, 2020. "Urban innovation and intercity patent collaboration: A network analysis of China’s national innovation system," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    16. Chen, Wei & Yan, Yan, 2023. "New components and combinations: The perspective of the internal collaboration networks of scientific teams," Journal of Informetrics, Elsevier, vol. 17(2).
    17. Ba, Zhichao & Mao, Jin & Ma, Yaxue & Liang, Zhentao, 2021. "Exploring the effect of city-level collaboration and knowledge networks on innovation: Evidence from energy conservation field," Journal of Informetrics, Elsevier, vol. 15(3).
    18. Chen, Kaihua & Zhang, Yi & Zhu, Guilong & Mu, Rongping, 2020. "Do research institutes benefit from their network positions in research collaboration networks with industries or/and universities?," Technovation, Elsevier, vol. 94.
    19. Taiye Luo & Zhengang Zhang, 2021. "Multi-network embeddedness and innovation performance of R&D employees," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 8091-8107, September.
    20. Zhao, Jianyu & Wei, Jiang & Yu, Lean & Xi, Xi, 2022. "Robustness of knowledge networks under targeted attacks: Electric vehicle field of China evidence," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 367-382.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:11:y:2017:i:2:p:407-422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.