IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v22y2018icp125-138.html
   My bibliography  Save this article

Cascading Impact Assessment in a Critical Infrastructure System

Author

Listed:
  • Rehak, David
  • Senovsky, Pavel
  • Hromada, Martin
  • Lovecek, Tomas
  • Novotny, Petr

Abstract

Research into disruptions to, or failures in, the Critical Infrastructure (further only CI), represents an important area of investigations into the phenomena in (a) Critical Infrastructure System (further only CIS). The results arising from the prediction of the intensity of problems - and the line(s) of their impacts spread–patterns, are an important part of any decision-making process carried out by the involved parties for the early and effective realization of Safety and Security Measures. Therefore, this article's aim is to assess cascading effects in a CI system. The first part of the article deals with the typology of impacts - the aspects that form their nature; and the ways these impacts spread in a CI structure. Furthermore, the current approaches to the assessment of such cascading impacts are also described. Based on these facts, the authors define the principles and framework for assessing cascading impacts in a CI system. The CIA Method (Cascading Impact Assessment - further only CIA), which serves for the quantification of the spread of cascading impacts in a CIS, is the most important part of this article. The essence of this method lies in its assessment of all lines of business occurring in the chosen area, as well as an assessment of their resilience and links; subsequent to this, a structural map of the risk of the spread of cascading impacts was created.

Suggested Citation

  • Rehak, David & Senovsky, Pavel & Hromada, Martin & Lovecek, Tomas & Novotny, Petr, 2018. "Cascading Impact Assessment in a Critical Infrastructure System," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 125-138.
  • Handle: RePEc:eee:ijocip:v:22:y:2018:i:c:p:125-138
    DOI: 10.1016/j.ijcip.2018.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548215300251
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2018.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Setola, Roberto & De Porcellinis, Stefano & Sforna, Marino, 2009. "Critical infrastructure dependency assessment using the input–output inoperability model," International Journal of Critical Infrastructure Protection, Elsevier, vol. 2(4), pages 170-178.
    2. Utne, I.B. & Hokstad, P. & Vatn, J., 2011. "A method for risk modeling of interdependencies in critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 671-678.
    3. Ebrahim Bagheri & Ali A. Ghorbani, 2010. "UML-CI: A reference model for profiling critical infrastructure systems," Information Systems Frontiers, Springer, vol. 12(2), pages 115-139, April.
    4. Luisa Franchina & Marco Carbonelli & Laura Gratta & Maria Crisci & Daniele Perucchini, 2011. "An impact-based approach for the analysis of cascading effects in critical infrastructures," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 7(1), pages 73-90.
    5. Nurre, Sarah G. & Cavdaroglu, Burak & Mitchell, John E. & Sharkey, Thomas C. & Wallace, William A., 2012. "Restoring infrastructure systems: An integrated network design and scheduling (INDS) problem," European Journal of Operational Research, Elsevier, vol. 223(3), pages 794-806.
    6. Cagno, Enrico & De Ambroggi, Massimiliano & Grande, Ottavio & Trucco, Paolo, 2011. "Risk analysis of underground infrastructures in urban areas," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 139-148.
    7. Chiaradonna, Silvano & Giandomenico, Felicita Di & Lollini, Paolo, 2011. "Definition, implementation and application of a model-based framework for analyzing interdependencies in electric power systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 4(1), pages 24-40.
    8. Burak Cavdaroglu & Erik Hammel & John Mitchell & Thomas Sharkey & William Wallace, 2013. "Integrating restoration and scheduling decisions for disrupted interdependent infrastructure systems," Annals of Operations Research, Springer, vol. 203(1), pages 279-294, March.
    9. Benoit Robert, 2004. "A method for the study of cascading effects within lifeline networks," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 1(1), pages 86-99.
    10. Rehak, David & Markuci, Jiri & Hromada, Martin & Barcova, Karla, 2016. "Quantitative evaluation of the synergistic effects of failures in a critical infrastructure system," International Journal of Critical Infrastructure Protection, Elsevier, vol. 14(C), pages 3-17.
    11. George E. Apostolakis & Douglas M. Lemon, 2005. "A Screening Methodology for the Identification and Ranking of Infrastructure Vulnerabilities Due to Terrorism," Risk Analysis, John Wiley & Sons, vol. 25(2), pages 361-376, April.
    12. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaime Santos-Reyes & Diego Padilla-Perez & Alan N Beard, 2019. "Transport Infrastructure Interdependency: Metro’s Failure Propagation in the Road Transport System in Mexico City," Sustainability, MDPI, vol. 11(17), pages 1-24, August.
    2. Fabio De Felice & Ilaria Baffo & Antonella Petrillo, 2022. "Critical Infrastructures Overview: Past, Present and Future," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    3. Amir Al Hamdi Redzuan & Rozana Zakaria & Aznah Nor Anuar & Eeydzah Aminudin & Norbazlan Mohd Yusof, 2022. "Road Network Vulnerability Based on Diversion Routes to Reconnect Disrupted Road Segments," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    4. David Rehak & Simona Slivkova & Heidi Janeckova & Dominika Stuberova & Martin Hromada, 2022. "Strengthening Resilience in the Energy Critical Infrastructure: Methodological Overview," Energies, MDPI, vol. 15(14), pages 1-14, July.
    5. David Rehak & Michal Radimsky & Martin Hromada & Zdenek Dvorak, 2019. "Dynamic Impact Modeling as a Road Transport Crisis Management Support Tool," Administrative Sciences, MDPI, vol. 9(2), pages 1-16, March.
    6. Natalia E. Lozano-Ramírez & Omar Sánchez & Daniela Carrasco-Beltrán & Sofía Vidal-Méndez & Karen Castañeda, 2023. "Digitalization and Sustainability in Linear Projects Trends: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(22), pages 1-38, November.
    7. Katerina Vichova & Martin Hromada & Martin Dzermansky & Lukas Snopek & Robert Pekaj, 2022. "Solving Power Outages in Healthcare Facilities: Algorithmisation and Assessment of Preparedness," Energies, MDPI, vol. 16(1), pages 1-14, December.
    8. Wang, Shuliang & Lv, Wenzhuo & Zhang, Jianhua & Luan, Shengyang & Chen, Chen & Gu, Xifeng, 2021. "Method of power network critical nodes identification and robustness enhancement based on a cooperative framework," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    9. Zhou, Shenghua & Yang, Yifan & Ng, S. Thomas & Xu, J. Frank & Li, Dezhi, 2020. "Integrating data-driven and physics-based approaches to characterize failures of interdependent infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 31(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan Al-Zarooni & Hamdi Bashir, 2020. "An integrated ISM fuzzy MICMAC approach for modeling and analyzing electrical power system network interdependencies," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(6), pages 1204-1226, December.
    2. Ouyang, Min & Pan, ZheZhe & Hong, Liu & He, Yue, 2015. "Vulnerability analysis of complementary transportation systems with applications to railway and airline systems in China," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 248-257.
    3. Stergiopoulos, George & Kotzanikolaou, Panayiotis & Theocharidou, Marianthi & Lykou, Georgia & Gritzalis, Dimitris, 2016. "Time-based critical infrastructure dependency analysis for large-scale and cross-sectoral failures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 12(C), pages 46-60.
    4. Hassan Al-Zarooni & Hamdi Bashir, 0. "An integrated ISM fuzzy MICMAC approach for modeling and analyzing electrical power system network interdependencies," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-23.
    5. Samiul Hasan & Greg Foliente, 2015. "Modeling infrastructure system interdependencies and socioeconomic impacts of failure in extreme events: emerging R&D challenges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 2143-2168, September.
    6. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    7. Quan Mao & Nan Li, 2018. "Assessment of the impact of interdependencies on the resilience of networked critical infrastructure systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 315-337, August.
    8. Moglen, Rachel L. & Barth, Julius & Gupta, Shagun & Kawai, Eiji & Klise, Katherine & Leibowicz, Benjamin D., 2023. "A nexus approach to infrastructure resilience planning under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    9. Almoghathawi, Yasser & Barker, Kash & Albert, Laura A., 2019. "Resilience-driven restoration model for interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 12-23.
    10. Wang, Shuliang & Lv, Wenzhuo & Zhang, Jianhua & Luan, Shengyang & Chen, Chen & Gu, Xifeng, 2021. "Method of power network critical nodes identification and robustness enhancement based on a cooperative framework," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    11. Guibing, Gao & Wenhui, Yue & Wenchu, Ou & Hao, Tang, 2018. "Vulnerability evaluation method applied to manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 255-265.
    12. Michal Wisniewski, 2021. "The Role of Integral Model of Critical Infrastructure Safety in Industry 4.0," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 1153-1188.
    13. Chao Fang & Piao Dong & Yi-Ping Fang & Enrico Zio, 2020. "Vulnerability analysis of critical infrastructure under disruptions: An application to China Railway High-speed," Journal of Risk and Reliability, , vol. 234(2), pages 235-245, April.
    14. Linn Svegrup & Jonas Johansson & Henrik Hassel, 2019. "Integration of Critical Infrastructure and Societal Consequence Models: Impact on Swedish Power System Mitigation Decisions," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1970-1996, September.
    15. Xu, Min & Li, Guoyuan & Chen, Anthony, 2024. "Resilience-driven post-disaster restoration of interdependent infrastructure systems under different decision-making environments," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    16. Garcez, Thalles Vitelli & de Almeida, Adiel Teixeira, 2014. "A risk measurement tool for an underground electricity distribution system considering the consequences and uncertainties of manhole events," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 68-80.
    17. Zhang, Zili & Li, Xiangyang & Li, Hengyun, 2015. "A quantitative approach for assessing the critical nodal and linear elements of a railway infrastructure," International Journal of Critical Infrastructure Protection, Elsevier, vol. 8(C), pages 3-15.
    18. Kaul, Hemanshu & Rumpf, Adam, 2022. "A linear input dependence model for interdependent networks," European Journal of Operational Research, Elsevier, vol. 302(2), pages 781-797.
    19. Garay-Sianca, Aniela & Nurre Pinkley, Sarah G., 2021. "Interdependent integrated network design and scheduling problems with movement of machines," European Journal of Operational Research, Elsevier, vol. 289(1), pages 297-327.
    20. Tsavdaroglou, Margarita & Al-Jibouri, Saad H.S. & Bles, Thomas & Halman, Johannes I.M., 2018. "Proposed methodology for risk analysis of interdependent critical infrastructures to extreme weather events," International Journal of Critical Infrastructure Protection, Elsevier, vol. 21(C), pages 57-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:22:y:2018:i:c:p:125-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.