IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v76y2014icp622-628.html
   My bibliography  Save this article

Feasibility and parametric study of tetrahydrofuran dehydration using reactive distillation with low energy requirement

Author

Listed:
  • Tavan, Yadollah

Abstract

A new configuration of a RD (reactive distillation) process is investigated to break the THF (tetrahydrofuran)/water azeotrope using Hysys process software. The main module is a column system containing the reaction of EO (ethylene oxide) with water, in which top and bottom streams are the desired products, THF and EG (ethylene glycol), respectively. This contribution explores feasibility of using the reaction in the RD column and also describes the influence of reflux ratio, reaction trays, operating pressure and feed–inlet locations of the RD column in simulation environment. The results show that high purities of EG and THF are simultaneously obtained by this novel technique leading to more profits of the RD process. The optimal design of the RD process is obtained by minimizing the energy demand and the optimum number of reactive trays is found to be 10. Furthermore, minimum energy demand is observed when the column operates at atmospheric pressure with reflux ratio of 1.25. Particularly, it is found that the optimal reboiler duty per unit THF produced is reduced from 32 to 3.7% for the new process as compared to the conventional one, while both schemes predict similar outputs.

Suggested Citation

  • Tavan, Yadollah, 2014. "Feasibility and parametric study of tetrahydrofuran dehydration using reactive distillation with low energy requirement," Energy, Elsevier, vol. 76(C), pages 622-628.
  • Handle: RePEc:eee:energy:v:76:y:2014:i:c:p:622-628
    DOI: 10.1016/j.energy.2014.08.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214009992
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.08.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaur, Jasdeep & Sangal, Vikas Kumar, 2017. "Reducing energy requirements for ETBE synthesis using reactive dividing wall distillation column," Energy, Elsevier, vol. 126(C), pages 671-676.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:76:y:2014:i:c:p:622-628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.