IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v32y2007i8p1352-1360.html
   My bibliography  Save this article

Life cycle inventory study on magnesium alloy substitution in vehicles

Author

Listed:
  • Hakamada, Masataka
  • Furuta, Tetsuharu
  • Chino, Yasumasa
  • Chen, Youqing
  • Kusuda, Hiromu
  • Mabuchi, Mamoru

Abstract

Magnesium (Mg) alloys are suitable materials for weight reduction in vehicles because of their low density of 1.7g/cm3 and high specific strength. The effect of Mg substitution for conventional steel parts in a vehicle on total energy consumption and CO2 emissions was evaluated through life cycle inventory calculation. The Mg substitution reduces the total energy consumption by weight reduction, although the production energy of a Mg-substituted vehicle is higher than those of conventional and Al-substituted vehicles. The Mg substitution can save more life cycle energy consumption than the Al substitution. Recycling of Mg parts is indispensable for efficient CO2 reduction, because the CO2 emissions during new ingot production of Mg are much higher than those of conventional steel and Al. Strengthening of the Mg parts also can reduce the total energy consumption and CO2 emissions. If the main body and hood are made of Mg alloy and the ratio of recycled ingot is sufficiently high, the life cycle energy consumption and CO2 emissions will be markedly reduced.

Suggested Citation

  • Hakamada, Masataka & Furuta, Tetsuharu & Chino, Yasumasa & Chen, Youqing & Kusuda, Hiromu & Mabuchi, Mamoru, 2007. "Life cycle inventory study on magnesium alloy substitution in vehicles," Energy, Elsevier, vol. 32(8), pages 1352-1360.
  • Handle: RePEc:eee:energy:v:32:y:2007:i:8:p:1352-1360
    DOI: 10.1016/j.energy.2006.10.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544206003094
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2006.10.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, J.D. & Han, W.J. & Peng, Y.H. & Gu, C.C., 2010. "Potential for reducing GHG emissions and energy consumption from implementing the aluminum intensive vehicle fleet in China," Energy, Elsevier, vol. 35(12), pages 4671-4678.
    2. Ali Keyvanfar & Arezou Shafaghat & Nasiru Zakari Muhammad & M. Salim Ferwati, 2018. "Driving Behaviour and Sustainable Mobility—Policies and Approaches Revisited," Sustainability, MDPI, vol. 10(4), pages 1-27, April.
    3. Claudia Tomasini Montenegro & Jens F. Peters & Manuel Baumann & Zhirong Zhao-Karger & Christopher Wolter & Marcel Weil, 2021. "Environmental assessment of a new generation battery: The magnesium-sulfur system," Papers 2104.03794, arXiv.org, revised Apr 2021.
    4. Chew, K.V. & Haseeb, A.S.M.A. & Masjuki, H.H. & Fazal, M.A. & Gupta, M., 2013. "Corrosion of magnesium and aluminum in palm biodiesel: A comparative evaluation," Energy, Elsevier, vol. 57(C), pages 478-483.
    5. Li, Huiquan & Zhang, Wenjuan & Li, Qiang & Chen, Bo, 2015. "Updated CO2 emission from Mg production by Pidgeon process: Implications for automotive application life cycle," Resources, Conservation & Recycling, Elsevier, vol. 100(C), pages 41-48.
    6. Usón, Alfonso Aranda & Capilla, Antonio Valero & Bribián, Ignacio Zabalza & Scarpellini, Sabina & Sastresa, Eva Llera, 2011. "Energy efficiency in transport and mobility from an eco-efficiency viewpoint," Energy, Elsevier, vol. 36(4), pages 1916-1923.
    7. Viñoles-Cebolla, Rosario & Bastante-Ceca, María José & Capuz-Rizo, Salvador F., 2015. "An integrated method to calculate an automobile's emissions throughout its life cycle," Energy, Elsevier, vol. 83(C), pages 125-136.
    8. Mayyas, Ahmad T. & Qattawi, Ala & Mayyas, Abdel Raouf & Omar, Mohammed A., 2012. "Life cycle assessment-based selection for a sustainable lightweight body-in-white design," Energy, Elsevier, vol. 39(1), pages 412-425.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:32:y:2007:i:8:p:1352-1360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.