IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224007382.html
   My bibliography  Save this article

Study on high-altitude ceiling strategy of compression ignition aviation piston engines based on BP-NSGA II algorithm optimization

Author

Listed:
  • Chen, Guisheng
  • Sun, Min
  • Li, Junda
  • Wang, Jiguang
  • Shen, Yinggang
  • Liang, Daping
  • Xiao, Renxin

Abstract

This paper explores the influence of different turbocharging modes and multi-parameter coordinated control on the performance of compression-ignition (CI) aviation piston engine (APE). Firstly, based on a constructed one-dimensional thermodynamic model of a CI APE, the study investigates the effects of different turbocharging modes and combinations of high and low-pressure stage variable geometry turbines (VGT) on the operational performance of the engine. Subsequently, a novel stepwise approximate multi-objective optimization algorithm is proposed, combining backpropagation neural networks and the non-dominated sorting genetic algorithm II. This algorithm evaluates the influence of multiple control parameters on a two-stage turbocharged engine's performance, achieving a balance between fuel economy and reliability. The research shows that equipping CI APEs with twin VGT for supercharging can notably enhance engine performance, enabling the achievement of favorable power recovery objectives at an altitude of 8000 m. The proposed optimization algorithm exhibits strong predictability and reliability, substantially accelerating the computation speed and reducing the data volume by approximately 95%. At an engine speed of 3887 rpm, compared to the unoptimized conditions, the brake specific fuel consumption of the best scenario at altitudes of 2000 m, 4000 m, 6000 m, and 8000 m is reduced by 7.1%, 7.2%, 8.6%, and 6.9%, respectively.

Suggested Citation

  • Chen, Guisheng & Sun, Min & Li, Junda & Wang, Jiguang & Shen, Yinggang & Liang, Daping & Xiao, Renxin, 2024. "Study on high-altitude ceiling strategy of compression ignition aviation piston engines based on BP-NSGA II algorithm optimization," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007382
    DOI: 10.1016/j.energy.2024.130966
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224007382
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130966?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.